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Summary (English)

Synthetic biology has emerged as an important discipline in which engineers
and biologists are working together to design new and useful biological systems
composed of genetic circuits. The purpose of developing genetic circuits is to
carry out desired logical functions inside a living cell. This usually requires sim-
ulating the mathematical models of these genetic circuits and perceive whether
or not the circuit behaves appropriately. Furthermore, synthetic biology uti-
lizes the concepts from electronic design automation (EDA) of abstraction and
automated construction to generate genetic circuits with the aim to reduce the
in-vitro (wet-lab) experiments. To address this, several automated tools have
been developed to improve the process of genetic design automation (GDA) with
different capabilities. This thesis attempts to contribute to the advancement of
GDA tools by introducing capabilities which we believe that no other existing
GDA tools support.

First, we introduce a user-friendly simulation tool, called D-VASim, which allows
a user to perform virtual laboratory experimentation by dynamically interacting
with the model during runtime. This dynamic interaction with the model gives
user a feeling of being in the lab performing wet-lab experiments virtually. This
tool allows users to perform both deterministic and stochastic simulations.

Next, this dissertation introduces a methodology to perform timing analyses
of genetic logic circuits, which allows a user to analyze the threshold value
and propagation delays of genetic logic circuits. In this thesis, it has been
demonstrated, through in-silico experimentation, that the threshold value and
propagation delay plays a vital role in the correct functioning of a genetic circuit.
It has also been shown how some circuit parameters effect these two important
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design characteristics.

This thesis also introduces an automated approach to analyze the behavior of
genetic logic circuits from the simulation data. With this capability, the boolean
logic of complex genetic circuits can be analyzed and/or verified automatically.
It is also shown in this thesis that the proposed approach is effective to determine
the variation in the behavior of genetic circuits when the circuit’s parameters
are changed.

In addition, the thesis also attempts to propose a synthesis and technology
mapping tool, called GeneTech, for genetic circuits. It allows users to construct
a genetic circuit by only specifying its behavior in the form of a boolean ex-
pression. For technology mapping, this tool uses gate library developed by the
collective efforts of the researchers at MIT and Boston universities. It is shown
experimentally that the tool is able to provide all feasible solutions, containing
different genetic components, to achieve the specified boolean behavior.

Finally, it has been shown how D-VASim can be used along with other tools
for useful purposes, like model checking. With respect to this, an experimental
workflow is proposed for checking genetic circuits using the statistical model
checking (SMC) utility of the Uppaal tool and the timing analysis capability
of D-VASim. We further demonstrated how the reliability of a simulation can
be improved by using real parameter values. In this regard, the relationship
between the simulation parameters and real parameters have been derived.



Summary (Danish)

Syntetisk biologi er en ny og vigtig disciplin i hvilken ingeniører og biologer
arbejder sammen om at designe nye og nyttige biologiske systemer, bestående
af genetiske kredsløb. Formålet med udvikling af genetiske kredsløb er at udfø-
re ønskede logiske funktioner i en levende celle. For at teste om det genetiske
kredsløb opfører sig korrekt, udføres der normalt simuleringer af en model af
det genetiske kredsløb. Syntetisk biologi udnytter begreber fra elektronisk de-
signautomatisering (EDA), så som abstraktion og automatiseret konstruktion,
til at genere genetiske kredsløb med det formål at reducere antallet af in-vitro
forsøg (vådrums laboratorie eksperimenter), der ellers kræves for at finde en
korrekt løsning. Forskere har i de senere år udviklet en række forskellige ge-
netiske designautomatiserings (GDA) værktøjer til at forbedre denne proces.
Denne afhandling bidrager til udviklingen af GDA værktøjer ved at introducere
egenskaber, som vi mener at ingen eksisterende GDA-værktøj understøtter.

Først introducerer vi et brugervenligt simuleringsværktøj, kaldet D-VASim, som
tillader brugeren at udføre virtuelle laboratorieforsøg gennem dynamisk inter-
aktion med modellen under simuleringen. Denne dynamiske interaktion med
modellen giver brugeren en følelse af at være i laboratoriet. D-VASim giver bru-
gerne mulighed for at udføre både deterministiske og stokastiske simuleringer.
Oven på simuleringsmodellen er der udviklet en metode til at udføre tidsanalyser
af genetiske logiske kredsløb. Denne giver brugeren mulighed for at analysere
logiske tærskelværdier og kredsløbsforsinkelser af genetiske logiske kredsløb. I
denne afhandling er det, gennem in-silico eksperimenter, blevet påvist at tær-
skelværdien og kredsløbsforsinkelsen spiller en afgørende rolle for den korrekte
funktion af et genetisk kredsløb, samt visse genetiske kredsløbsparametre påvir-
ker disse to vigtige designegenskaber.
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Denne afhandling introducerer også en automatiseret analyse af opførslen af
genetiske logiske kredsløb ud fra simuleringsdata. Herved kan boolesk logik af
komplekse genetiske kredsløb analyseres og / eller verificeres automatisk. Det
fremgår også af denne afhandling, at analysen er effektiv til at bestemme va-
riationerne i opførsel af et givet genetiske kredsløb, når kredsløbets parametre
ændres.

Endelig introducerer afhandlingen et syntese- og teknologi-mapings værktøj for
genetiske kredsløb, kaldet GeneTech. Dette værktøj giver brugeren mulighed for
at konstruere et genetisk kredsløb ved blot at specificere dets ønskede opførsel
i form af booleske udtryk. Til teknologi-maping, bruges et genetisk komponent
bibliotek udviklet af forskere ved MIT og Boston universitetet. Det vises eks-
perimentelt at GeneTech er i stand til at finde samtlige mulige løsninger, der
potentielt kan realisere den specificerede booleske opførsel. Endelig er det vist,
hvordan D-VASim kan bruges sammen med andre værktøjer, som f.eks. mo-
del checking. Der foreslås et eksperimentelt workflow til validering af genetiske
kredsløb ved hjælp af det statistiske model checking (SMC) -værktøjet i Up-
paal værktøjet og tidsanalyse delen af D-VASim. Yderligere demonstrerer vi,
hvordan pålideligheden af en simulering kan forbedres ved bruge de reelle para-
meterværdier. I denne henseende er forholdet mellem simuleringsparametre og
reelle parametre er blevet afledt.
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Chapter 1

Introduction

An advancement in the understanding of cellular processes and DNA synthesis
methods suggests that the living cells can be viewed as a programmable matter.
With this revolutionary finding, logical computations can be performed inside a
living cell through a group of biological components, collectively called genetic
circuits. A genetic circuit represents a gene regulatory network (GRN), which
is composed of small genetic components. These components interact with the
external signals (like temperature, light, proteins etc.) to control the behavior
of a living cell.

Genetic circuits are a key application of synthetic biology which is an emerg-
ing engineering discipline to program cell behaviors as easy as computers are
programmed. Synthetic biology is defined by syntheticbiology.org as;

“(a) the design and construction of new biological parts, devices and systems
and (b) the re-design of existing natural biological systems for useful purposes”.

Biologists are interested in synthetic biology because it provides a viewpoint to
analyze, understand, design and ultimately build a biological system. Engineers,
on the other hand, are attracted towards synthetic biology because the living
world has the abundant mechanisms for controlling life behavior and processing
information.

http:\syntheticbiology.org


2 Introduction

1.1 Why computations in cells?

There are numerous complex computations a living cell performs on the contin-
uous environmental signals they encounter. The natural biological systems can
be engineered to perform sophisticated computations in living cells. Biologists
and engineers are working together on synthetic biology [1] to design new and
useful biological systems. The synthetic biological systems performing digital [2]
and analog [3] computations have already been implemented.

The artificial computation in living cells will revolutionize the industry of medicine
and biotechnology. The aim of performing synthetic computations in living cell
is to develop genetic devices to address real-world problems. These problems in-
clude the development of genetic systems to detect and destroy cancer cells [4];
production of liquid biofuels to address the global energy and environmental
problems [5]; consuming toxic wastes to avoid environmental pollution; and the
production of drugs to treat health problems like Malaria [6], to name a few.

1.2 State-of-the-art

Similar to electronic design automation (EDA) processes which dramatically en-
hanced the design, verification, validation and production of electronic circuits,
researchers have started to work on the development of genetic design automa-
tion (GDA) tools [7] to automate the design, test, verification and synthesis
processes of genetic circuits prior to their validation in laboratory. There are
several GDA tools (see Section 2.4) which allow synthetic biologists to design
genetic circuits at a high level of abstraction with the focus on a desired func-
tion, rather than exact genetic components used to achieve this functionality.
By encoding standardized data, genetic constraints, and the components library
in GDA tools, the process of genetic circuit construction and analysis has been
automated. This not only has reduced the lengthy design process and iterative
tests for constructing complex genetic circuits, but has also promoted the reuse
of experimentally tested genetic components.

The modern trend to analyze genetic circuits is to perform in-silico (in com-
puter) analysis either by solving ordinary differential equations (ODEs) or by
performing stochastic simulations, with the aim to reduce the number of re-
quired in-vitro (in laboratory) experiments. In order to perform these analyses
in a computer, models of biological systems must be represented in a standard
computerized format. Several different methods have been proposed to repre-
sent and analyze genetic systems [8]. Among these methods, the most widely
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used standards to represent the behavior and the structure of a genetic model are
the Systems Biology Markup Language (SBML) [9], and the Synthetic Biology
Open Language (SBOL) [10], respectively. Unfortunately, no single standard
exists which can be used to represent both the behavior and the structure of a
biological model. SBML allow users to define the behavior of a circuit by spec-
ifying the species of a genetic network and how they interact with each other
through chemical kinetics. SBOL, however, is used to illustrate genetic designs
graphically with the help of standardized vocabulary of schematic glyphs (SBOL
Visual) as well as standardized digital data (SBOL Data). More information on
standards can be found in Section 2.3.

1.3 Motivation

Synthetic biology not only aims to play with natural biological systems but also
to construct artificial complex systems from the library of well-characterized
biological components, in a similar way as electronic circuits are designed and
constructed. While comparison with electronic circuits is useful, there are sev-
eral important challenges which make the design of genetic circuits more chal-
lenging. For instance, genetic components, in contrast to electronic components,
are not physically separated from each other. This not only makes the reuse
of genetic components in the same system more difficult, but also increases the
cross-talk with the neighboring circuit components. Also, the electronic logic
gates are composed of transistors which have well-defined and uniform thresh-
old voltage levels that categorizes the logic levels 0 and 1. However, in genetic
circuits, each genetic gate is composed of different genetic components which
results in the different threshold concentration values. Additionally, in compar-
ison to electronic circuits which have the same physical quantities as input and
output signals, the genetic circuits have different species at the input and other
at the output, which makes the genetic modules integration more difficult.

As electronic engineers develop circuits using electronic logic gates (such as
AND, NAND, and NOT gates), genetic engineers use biological equivalents of
these components to control the function of a cell [2, 11]. The field of genetic
circuit design is still immature and only small circuits, containing limited num-
ber of genes, can be constructed in the laboratory. However, genetic circuits
can be designed from a very large number of genetic parts [12] creating a large
space of possible solutions even for circuits of limited complexity.

The current practice is to design such circuits directly in the laboratory, through
trial and error, which is a time consuming and costly process, as thousands of
circuits may have to be tested in order to find a few that works. Due to this,
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the process of design and implementation of genetic circuits remains very slow.
To address these challenges, it is necessary to improve computer aided design
(CAD) tools to speed up the design and analyses procedures of genetic circuits.
In particular, it is necessary to develop tools which allow genetic design engineers
to capture and analyze the stochastic behavior of biological systems dynamically
in a way that sounds natural to them.

1.4 Present Challenges

An electronic design engineer would never fabricate a circuit on silicon prior to
its functional validation and behavioral analysis. Similarly the most important
phase in GDA is the simulation and in-silico (in computer) analysis of genetic
circuit models to increase the chances that the system would work in-vivo (in
living organism) correctly. There are plenty of tools developed to simulate the
behavior of genetic circuits [13]. These tools, however, lack some important and
useful features which can not only increase the designer’s productivity but also
help them design genetic circuit models more effectively. Out of many challenges
in the field of GDA, some of the challenges, listed below, have been addressed
in this thesis. We believe that addressing the following challenges will not only
increase the productivity of genetic design engineer but will also increase the
reliability and robustness of genetic circuit models.

1.4.1 Virtual experimentation

First, it would be very helpful for biologist or design engineers to have a tool
which allow them to perform laboratory experiments virtually in-silico. This
corresponds to an experimental environment where a user can trigger the con-
centrations of input species or change the parameter values (for example, in-
creasing temperature) at any instant of time and observe their live effects on
the model’s behavior. For in-silico analyses, the standard way to capture the
instantaneous, discontinuous state change in the model is by defining events
(see Section 2.3 for more details). For example, events (shown as green-boxes in
Figure 2.6(b)) are used to trigger the concentration of input species to a certain
level, at a specific point in time, and to observe the effects on the concentration
of output species. A single event can be used to represent only one instance of
triggering the concentration to a certain level at a specific time. Since events
are predefined, they cannot be changed during runtime, which means that the
output of a genetic circuit can be observed only for defined events. In order to
observe the output, the different set of input conditions, i.e., when to change



1.4 Present Challenges 5

what input to which level, must be defined in each event. Even for moderate
sized genetic circuits, capturing all combinations of inputs and concentration
levels may require a very large number of events to be defined and simulated.
To the best of our knowledge, there exist no tools that allow users to trig-
ger/change input species on the fly during the simulation, effectively creating a
virtual lab.

1.4.2 Timing and threshold analysis

In contrast to EDA tools which allows a user to perform timing analyses, to
the extent of our knowledge, no GDA tool allows a user to perform timings and
threshold value analyses for genetic gates/circuits. Electronic design engineers
do not need to estimate the threshold value for each electronic circuit because
these values are well defined and holds valid for all electronic logic gates. How-
ever, this is not the case for genetic gates where each of them are composed
of different components and have different input and output molecular identi-
ties. Therefore each genetic gate may have different input threshold values and
thus exhibit different timing behaviors. It is therefore necessary to have such a
tool which should assists a user in identifying the correct input threshold con-
centration required to trigger the circuit’s output along with the estimation of
propagation delays. It may also help a user to perform in-vitro experimenta-
tion quickly by applying the estimated threshold concentration values at input
(rather than following trial-and-error approach) and expect the circuit’s output
to be triggered approximately within the time estimated as a propagation delay.

Similar to electronic circuits where timing analysis is a vital design character-
istic, the timing analysis may also become an essential design characteristic in
genetic circuits. It is therefore very important to have such analyses in-silico
prior to the circuit’s implementation in-vivo.

1.4.3 Automatic logic validation

It is also interesting to automatically validate if the behaviour of a genetic
circuit complies with the design rules. For example, the behavior of a genetic
AND gate can be validated by applying all the possible input combinations and
determine if the circuit’s response obeys the AND Boolean logic. It might be
easier to analyze the logical behavior of small circuits by just looking at response
curves, but it may become a cumbersome task if the behavior is to be validated
manually for complex genetic circuits. Therefore, an automated approach for
analyzing the logic in genetic circuits will be helpful.



6 Introduction

1.4.4 Effortless circuit designing

One of the several challenges in making the design process of genetic gates
easier and user-friendly is to let the designers construct genetic circuits at a
very high level of abstraction. Recently a tool, named Cello, is developed [14]
which allows users to program genetic circuits as easy as electronic circuits are
designed through hardware description language (HDL). Cello provides user,
specially computer scientist, a fairly high-level of abstraction to develop genetic
circuits without worrying about the underlying physics of genetic interactions.
However, this still requires a biologist to learn programming principles and the
syntax in which the design module should be written. To let the biologists design
genetic circuits effortlessly without additional prerequisites, a further simple and
straightforward mechanism should be developed.

1.5 Thesis Contributions

The main aim of this research is to enhance the advancement of GDA tools for
analysis, verification, and synthesis of genetic logic circuits. The contributions
of this dissertation are the development of the following methods and tools to
address the challenges mentioned in Section 1.4:

• Virtual laboratory simulation environment (D-VASim)

A simulation tool, named D-VASim (Dynamic Virtual Analyzer and Simu-
lator) is developed, which allows a user to carry out virtual lab experiments
as an interactive process during runtime, rather than a batch process which
is a current practice. It is a user-friendly software with an intuitive graph-
ical user interface, and allows a user to perform both deterministic as well
as stochastic simulations. This software tool is available to download freely
for public use from http://bda.compute.dtu.dk/downloads/d-vasim/.

• Timing Analyzer (A plugin to D-VASim)

A methodology is introduced to perform the timing and threshold value
analysis of genetic logic circuits. This methodology is integrated in D-
VASim as a plugin tool.

• Logic Analyzer (A plugin to D-VASim)

A method is introduced to validate the boolean logic of a genetic circuit
from the stochastic simulation data. This boolean logic analysis algorithm
is scalable and able to analyse n-input genetic logic circuits through an

http://bda.compute.dtu.dk/downloads/d-vasim/
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automated process. This tool is also integrated to D-VASim as a plugin
tool.

• GeneTech (Standalone tool)

An optimization, synthesis and technology mapping tool for genetic logic
circuits. This tool is able to construct a genetic circuit using the library of
genetic gates developed at MIT and Boston universities. It is currently a
standalone tool but can be integrated to D-VASim as a plugin. GeneTech
provides a user an ability to develop genetic circuits only by specifying
its behavior in the form of a Boolean expression. With this ability, users,
specially biologists, do not need to learn any additional programming lan-
guage for designing genetic circuits. This tool can be downloaded from
http://bda.compute.dtu.dk/downloads/genetech/.

• Use of D-VASim with other tools

Besides above mentioned contributions, the research is further extended to
demonstrate how D-VASim tool can be used along with existing tools for
useful purposes. In particular, the experimental flow for model checking of
genetic circuits, using Uppaal [15] and D-VASim [16], has been proposed.
Also, an effort has been made to use Cello [14] parameters for simulating
the models of real genetic circuits.

Figure 1.1 shows a very high level diagram which describes how the major
contributions made in this dissertation can be used. Having the SBML model of
a genetic circuit in D-VASim, users can perform ODE and stochastic simulations
in an environment which gives them a feeling of being in the lab performing live
experiments by interacting with the model during run-time. Similar to many
EDA tools which allow hardware design engineers to perform timing analysis of
electronic circuits, D-VASim is the first tool which provides users an ability to
perform the timing analysis of genetic circuits. Furthermore, the experimental
data, generated from stochastic simulations, can be used to analyze the logical
behavior of a genetic circuit. Another tool, GeneTech, takes a raw Boolean
expression as an input and generates all the possible circuits (in the form of
structure) to achieve a desired logic. The dotted line between GeneTech and
the D-VASim logic analyzer shows that the Boolean expression generated from
the logic analyzer can also be used to obtain other possible circuits for the model
being simulated. The circuits are generated using the genetic gates library [14].
The generated models of genetic circuit can then be synthesized into SBML form
using any SBML-synthesis tool (like iBioSim [17]) and then can be analyzed back
in D-VASim again.

http://bda.compute.dtu.dk/downloads/genetech/
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Figure 1.1: The abstract diagram showing how the contributions of this dis-
sertation can be used.

1.6 Thesis Organization

This dissertation is organized as follows. Chapter 2 gives the information about
genetic circuits. This chapter gives some basic knowledge of genetic terminolo-
gies and a brief overview of how genetic systems work. It describes standards
in more detail and also give information about existing GDA tools.

Chapter 3 gives a brief overview of D-VASim. It briefly describes the whole
simulation flow with the help of an example circuit model. The details of each
subsequent step in this flow is discussed in separate chapters.

In chapter 4, the methodology of timing analysis of genetic logic circuits is
presented. This chapter discusses the algorithm developed for analyzing the
threshold value and propagation delay of a genetic circuit model. The exper-
imental results are included to support the significance of timing analysis in
genetic logic circuits.

Chapter 5 explains the methodology developed to analyze and verify the logical
behavior, of a genetic circuit, from the stochastic simulation data. This chapter
also contains the experimental results of logic analysis on different genetic circuit
models and the performance evaluation of the algorithm.

The approach for synthesis and technology mapping of genetic circuits is pro-
vided in Chapter 6. This chapter begins with describing the algorithms de-
veloped for reducing the Boolean expression of genetic gates into an optimized
form, followed by its synthesis into NOR-NOT form. Then the methodology of
technology mapping, along with the discussion of how the genetic gates library
is constructed from the data disclosed in [14], is presented. In the end, some
experimental results on case study have been presented.
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In Chapter 7, it has been demonstrated how D-VASim can be used in collab-
oration with other tools to perform useful tasks. First an experimental flow is
proposed for the statistical model checking of genetic circuits using Uppaal [15]
and D-VASim [16]. The experimentation on genetic circuit models are per-
formed to explore their design parameter sensitivity using Uppaal SMC [18].
Next, an attempt is made to show that how Cello [14] parameters can be used
to perform simulation.

Chapter 8 concludes this research work with the discussion of possible future
directions.

Appendix A contains the supplementary data of Chapter 3, which includes
the sample ODE and stochastic simulation results produced by D-VASim.

Appendix B contains the supplementary data of Chapter 4. It consists of the
timing analysis results for all the genetic circuit models being experimented.

The complete experimental data for the logic analysis (Chapter 5) is enclosed
in Appendix C.

The extended experimental data related to GeneTech (Chapter 6) is given in
Appendix D

D-VASim Quick Start Guide (QSG) is included in the Appendix E.
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Chapter 2

Genetic Circuits

A biological system is composed of living organisms which consists of one or
more living cells. The behavior of each of these cells is controlled by genetic
circuits which perform dedicated tasks to achieve the overall functionality of a
biological system. These genetic circuits, which are composed of several biolog-
ical components (called the genes network) regulate the amount of proteins in a
cell. This gene-regulated network is triggered by external signals, for example,
light, temperature, presence of specific proteins, etc., to control the behavior
of a living cell, effectively exhibiting a Boolean logic function. The aim of this
chapter is to briefly introduce genetic circuits to the audience not familiar with
synthetic biology. Section 2.1 gives a brief overview of biology and some ba-
sic terminologies, frequently used in genetic design, which are necessary to be
known specially to the computer scientists or engineers who do not have pri-
mary knowledge of synthetic biology. Next, Section 2.2 presents an example of
regulated transcription in lac operon and explains its genetic logic. Section 2.3
gives more information on the standards and Section 2.4 gives a brief overview
of GDA tools.
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2.1 Central Dogma of Molecular Biology

The Living Cell is the smallest biological unit of any living organism, and is
often called the building block of life. Each cell is composed of several organelles
like mitochondria, ribosomes, nucleus etc. The nucleus is the largest cellular
component which contains part or all of the cell’s genetic information. This ge-
netic information is stored in the deoxyribonucleic acid (DNA) molecule, which
is packaged into a thread-like structure called chromosomes. DNA is further
divided into a group of nucleotide sequences called genes. Figure 2.1 shows the
relationship between the eukaroytic cell’s nucleus, chromosomes in the nucleus,
and genes.

Figure 2.1: The hierarchical relationship of living cell and gene. (Image cour-
tesy of BBC Science1)

DNA is composed of two nucleotides strands coiled around each other to form a
double-helix structure. Each of these strands contain a sequence of four nucle-
obases - cytosine (C), guanine (G), adenine (A) and thymine (T). These bases
on both of the strands bind to each other in pairs such that A only binds with
T and G only binds with C. The sequence of these base-pairs codes for various
genetic components including, promoters, operators, genes, etc.

Each gene is a region of DNA which generates a specific protein through the
processes called transcription followed by translation. During transcription,
the particular region of DNA (gene) is converted to ribonucleic acids (RNAs)
by another RNA molecule called RNA polymerase (RNAP), which binds to a
specific region of that gene called the promoter. RNA polymerase then moves
along the gene’s coding sequence and temporarily breaks the bond between the
two DNA strands causing it to unwind or unzip. During this unwinding process,
the RNA transcript is generated as shown in Figure 2.2. This process of RNAP

1http://www.bbc.co.uk/schools/gcsebitesize/science/edexcel/classification_
inheritance/genesandinheritancerev1.shtml

http://www.bbc.co.uk/schools/gcsebitesize/science/edexcel/classification_inheritance/genesandinheritancerev1.shtml
http://www.bbc.co.uk/schools/gcsebitesize/science/edexcel/classification_inheritance/genesandinheritancerev1.shtml
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generation continues until the moving RNAP reaches a region of DNA called
terminator. At this instant, RNAP leaves DNA and the newly formed RNA is
released. Many of these RNAs holds the instructions for constructing protein,
and are commonly termed as messenger RNAs (mRNAs).

Figure 2.2: The process of transcription. (Image courtesy of the National
Human Genome Research Institute)

Now, during the process of translation, another protein, the ribosome, binds to
mRNA at its specific region, called the ribosome binding site. The ribosome
moves along mRNA and generate the specific proteins. This process of convert-
ing DNA into mRNA through transcription and then the conversion of mRNA
into protein through translation is known as the central dogma of molecular
biology [19].

There are two types of gene expressions, constitutive and regulated. A Gene
is expressed constantly in constitutive type of gene expression, whereas it is
controlled and dependent on the environmental changes in regulated gene ex-
pression. The genetic circuits are based on the genes which are transcribed
through regulation. This transcriptional regulation is carried out by regulatory
proteins, called transcriptional factors, which binds to an operator site, a region
of DNA near promoter. The transcription factor either block (referred to as re-
pressor) or help (referred to as activator) RNAP to bind to the promoter region
to initiate a process of transcription.
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2.2 Example Genetic Circuit: Lac Operon

One of the classical systems used to investigate the transcriptional regulation
of Lac Operon, was presented by Jacob et al. in [20]. Operon is referred to as a
region of DNA which consists of a group of genes controlled by a single promoter.
Lac operon (or lactose operon) is required for the transport and metabolism of
lactose in the bacterium Escherichia coli, and it was the first gene-regulatory
network to be explored clearly.

Figure 2.3: Transcriptional regulation of lac operon. (a) Structure of Lac
operon. No transcription when (b) lactose is absent and (e) glu-
cose is present. Transcription begins when (c) lactose is present
and (d) glucose is absent.
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Figure 2.3(a) shows the structure of the lac operon. Three genes, lacZ, lacY, and
lacA are required, as a cluster, to utilize lactose by the bacterium. The lacZ, lacY
and lacA genes code for the enzymes beta-galactosidase, lactose permease and
galactoside transacetylase, respectively. The lacP is the promoter region which
transcribes the lacZ, lacY and lacA genes as a single polycistronic mRNA. The
lacO region is an operator site to which a transcription factor binds to regulate
gene expression. The complete unit consisting of the lac promoter (lacP), lac
operator (lacO), and the three genes (lacZ, lacY and lacA) is known as the
lac operon. The lacI is the regulatory gene of lac operon that codes for an
mRNA that is translated to produce a protein known as lac repressor. The "T"
(shown as red region) corresponds to the terminator region where the RNAP
stops transcription. The black region between lacI gene and the lac promoter is
the activator binding site (ABS), which helps RNA polymerase (shown as yellow
structure) to bind to the promoter site.

As shown in Figure 2.3(b), when the lactose is not available inside the cell, the
lac repressor recognizes the operator site and binds to it tightly. This prohibits
the RNA polymerase to recognize the promoter region, and thus prevents the
operon to be transcribed. When lactose enters the cell, a small amount of it
is converted to allolactose, which binds to the lac repressor. This causes a
structural change in the lac repressor protein that prevents it from binding to
the lac operator site. When lac repressor is not bound to an operator site, RNAP
easily binds to a promoter region and transcribe the polycistronic mRNA. This
mRNA is then translated to produce beta-galactosidase, lactose permease, and
galactoside transacetylase proteins, as shown in Figure 2.3(c).

The discussion of Figure 2.3(b) and (c) indicates that the lac operon is tran-
scribed when lactose is present inside the cell. However, the binding of RNAP,
to a promoter site, weakly depends on the presence of lactose, and strongly
on the presence of the catabolite activator protein (CAP) inside the cell. CAP
attaches to an ABS and helps RNAP to bind to the promoter region to drive
high levels of transcription. The CAP cannot directly bind to an ABS, rather it
is regulated by a small molecule known as cyclic AMP (cAMP), which acts as a
"hunger signal" when the glucose levels inside the cell are low. Therefore, when
the glucose level is low, the cAMP bind to CAP and make it able to attach to
the ABS. When CAP attaches to the activation binding site, it helps RNAP to
bind to the promoter region strongly, and begin transcription. This process is
shown in Figure 2.3(d).

On the contrary, when the glucose level rises, it reduces the concentration of
cAMP, which in turn makes the CAP unable to attach to the ABS. Without
CAP being attached to the ABS, RNAP cannot attach to the promoter region
and thus the transcription process is stopped, as shown in Figure 2.3(e).
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2.2.1 Genetic logic in lac operon

From the discussion above, the natural genetic logic exist in the transcriptional
behavior of lac operon can be extracted. Figure 2.4(a) summarizes the logical
behavior of lac operon in the form of truth table, with inputs being Glucose (G)
and Lactose (L), and the output being Transcription (T) of lacZ, lacY and lacA
genes.

Figure 2.4: Genetic logic in lac operon. (a) Truth Table. (b) Circuit
schematic.

When glucose is absent (logic 0), CAP binds to ABS and RNAP should per-
form transcription. However, when the lactose is also absent (logic 0), the lacI
repressor protein binds to the operator region and blocks RNAP to move along
the DNA strand to perform transcription. Therefore, transcription is always
blocked whenever lactose is absent in the cell. Similarly, when glucose is present
in the cell, it prohibits CAP to bind to ABS and thus reduce the affinity of
RNAP to bind to the promoter region to begin transcription. However, when
glucose is absent and lactose is present, the lac operon is transcribed, resulting
in the Boolean logic shown as a circuit diagram in Figure 2.4(b).

2.2.2 The standard SBOL representation of lac operon

Figure 2.4(b) gives a fairly low-level details of how lac operon works, which is not
the standard way of representing any genetic system. As mentioned earlier in
Chapter 1 - Introduction, the SBOL is the standard way to represent the high-
level diagrams of genetic systems. The equivalent SBOL visual (or SBOLv)
diagram of the genetic system for lac operon would be something similar to the
diagram shown in Figure 2.5. This figure indicates that a single promoter, Plac,
is responsible for the transcription of three genes, lacZ, lacY and lacA. The
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presence of glucose represses and the presence of lactose activates the promoter,
reflecting that a transcription is initiated when glucose is absent and lactose is
present in the cell. The symbol "T" represents the terminator region of DNA
where the transcription is stopped. As a result of transcription, an mRNA is
produced and the ribosomes binds to this mRNA at the ribosome binding site
(shown as semi-sphere in Figure 2.5), to carry out the production of output
proteins beta-galactosidase, permease and galactoside transacetylase, from the
genes lacZ, lacY and lacA, respectively.

Figure 2.5: SBOL visual representation (or SBOLv) of lac operon genetic sys-
tem.

The example discussed above is a natural genetic logic circuit which exists in the
lac operon. Some researchers have already started to engineer custom genetic
logic components to achieve a desired logical behavior in a living cell [14, 21].
We have used the SBML models of these genetic logic circuits [14, 21] to test
the tools and method presented in this thesis.

2.3 Standards

It is mentioned in Chapter 1 - Introduction that SBML and SBOL are two ma-
jor standards to represent genetic model’s behavior and structure respectively.
Both of these standards are developed by the members of systems and synthetic
biology community.

The purpose of SBML standard is to exchange essential aspects of biological
model among different softwares and is supported by over 290 GDA tools. It is
a machine-readable eXtensible Markup Language (XML) that is independent of
any specific software language. For example, the SBML model of a genetic AND
gate circuit, designed in iBioSim [17], is shown in Figure 2.6(b). Tools which
support SBML-synthesis allow users to define the model parameters, species and
their biochemical interactions using mathematical expressions. As an example,
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the SBML model of a genetic AND gate circuit is shown in Figure 2.6(b) in
which the reaction for pTac, along with an external influence of IPTG inducer,
to produce A1AmtR_protein is shown in Figure 2.6(c). The values of the pa-
rameters in this figure, for example kb, ko_r, nc, etc, are defined separately.
The different SBML-synthesis tools may have their own icons to represent stan-
dard biological processes like repression, activation etc. For example, in Figure
2.6(b), A1AmtR_protein repressing the following promoter pAmtR is shown
with the red line having round-headed circle. The same processes are repre-
sented differently in different tools.

Figure 2.6: SBML and SBOLv diagram of genetic AND gate. (a) Circuit
schematic. (b) SBML model design in iBioSim [17]. (c) Example
kinetic reaction. (d) SBOLv diagram.
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In order to keep the uniformity in representing these models, the SBOL is de-
veloped to document all biological models in a standardized manner. It is an
emerging data standard for synthetic biology with growing support among sev-
eral GDA software tools, including biochemical modeling tools [22–24], design
composition tools [22,23,25–27], and sequence editing tools [28,29]. It is also an
eXtensible standard so it can easily adapt the evolving needs of the synthetic
biology community. Figure 2.6(d) shows the SBOLv diagram of the genetic
AND gate model shown in Figure 2.6(b).

As said before that different tools may have their own icons to represent the bio-
logical processes and species, but all of them are supposed to generate the same
XML document in order to be used by other software tools. Figure 2.7(a) and
(b) shows the cropped images of SBML and SBOL xml files, respectively, of the
same genetic AND gate model shown in Figure 2.6. Both of the images shown
in this figure depicts some portion of these SBML and SBOL xml files, showing
how the reaction (between pTac and A1AmtR_protein) shown in Figure 2.6(c)
are represented.

Figure 2.7: Cropped images of SBML and SBOL files of genetic AND gate
circuit shown in Figure 2.6. (a) SBML file. (b) SBOL file.

2.4 Genetic Design Automation (GDA) Tools

Numerous computational tools [13,23,30,31] have been developed to assist users
in designing genetic circuits through an automated processes. These tools in-
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cludes DNA sequence editing, biochemical modeling, design composition, and
technology mapping tools. According to [13], there are more than 290 tools
which support SBML model construction and simulation; and about 30 of them
are GDA tools which support sequence editing, design composition, optimization
and technology mapping. Some of these tools serve as a toolbox for commercial
platforms including MATLAB, Mathematica, and Oracle; some are developed
as APIs or plugins to specific software systems, while others are independent
tools for design and simulation.

2.4.1 Sequence editing tools

Sequence editing tools are typically considered low-level tools which enable
user to construct, edit or annotate the base-pair sequences of genetic compo-
nents. These tools include SBOLDesigner [32], Synthetic GeneDesigner [28],
GeneDesign [33], VectorEditor [29], and Kera [34]. Only few of the sequence
editing tools support the SBOL standard. However, nearly all of these tools
support reading and writing plain text DNA sequences that comply with the
International Union of Pure and Applied Chemistry (IUPAC) codes for nu-
cleotides [35] and amino acids.

2.4.2 Biochemical modeling and design composition tools

These tools allow users to develop mathematical models and usually also provide
users with the ability to analyze these models. They require users to manually
compose designs and generate standard files automatically. Some of these tools
are CellDesigner [36], BioUML [37], iBioSim [17], COPASI [38], D-VASim [16,
39], Uppaal [15], Asmparts [40], GEC [41], GenoCAD [26], Kera [34], ProMoT
[42], Antimony [43], Proto [23], SynBioSS [44], TinkerCell [22], and Cello [14].
Few of these tools also support model checking of genetic circuits including
[15,17,18,45,46].

A vast majority of these tools provides different level of support of reading
and/or writing SBML files to capture the mathematical behaviour of biological
models. For example, CellDesigner, iBioSim, COPASI, and ProMoT support
both import and export of SBML files; Asmparts, GenoCAD, GEC and Syn-
BioSS, on the other hand, are only able to export SBML; while D-VASim, being
a simulation tool, is able to import SBML files only. Each of these tools have
their own advantages. For example, iBioSim, Antimony and BioUML tools sup-
port hierarchical model composition in a standardized SBML format. iBioSim
also supports designing and modifying the DNA sequences of genetic constructs
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using SBOL data model [32]. Most of these tools support both deterministic
and stochastic simulations, including iBioSim, COPASI and D-VASim. A no-
ticeable feature of SynBioSS is that it supports running the complex models on
a supercomputer to speedup the process of finding genetic parts to construct
a desired biological system. An apparent feature of TinkerCell tool is that
it provides a platform to integrate third-party algorithms for testing different
methods relevant to synthetic biology. The distinctive feature of D-VASim is
its virtual simulation environment to let the users perform experimentation by
dynamically interacting with the biological models. It also supports automated
timing and logic analysis of genetic circuits in its virtual simulation platform.

Some of the modeling tools support programming languages and allows the
user to design biological circuits using different programming formats. For ex-
ample, Proto converts a high-level program specifications into gene-regulatory
networks, optimizes it, and then validate its behavior through simulation. Kera
is a C -like object-oriented programming language which supports a biopart rule
library called Samhita which is a database containing part IDs, their types
and sequences. GenoCAD, a web based tool, also supports some features of
programming language and a built-in database of BioBricks. It allows user to
perform model simulation using mass action kinetics. Antimony is a module-
based programming language which provides a special syntax to create modular
genetic networks. The additional library, libAntimony, in this tool allows other
software packages to import models and convert them to SBML. Unlike Geno-
CAD, which uses rates of mass action for simulation, Antimony uses the rates
of gene expression, for example, polymerase per second (PoPS) and ribosomes
per second (RiPS) for simulations. Since it is difficult to connect genetic gates
because of different input and output proteins, the rate of gene expression is
often used as the integration signal to solve this problem [21]. The rate of gene
expression, which is similar to the rate of flow of electron (electric current), is
the rate at which the RNA polymerases move across a DNA strand.

GEC, developed by Microsoft corporation, is a rule-based programming lan-
guage which also allows user to express the logical interaction of biological com-
ponents in a modular manner. The GEC program is translated into multiple
possible genetic devices (RBS, promoters etc). The GEC model is refined by
simulating these possible devices iteratively and ruling out those with undesired
simulation results. A recently published web-based tool, named Cello, allows
user to develop genetic circuits using verilog (http://www.verilog.com/) - a
hardware description language used for designing electronic circuits. The cir-
cuits are developed using the genetic gates which have already been tested in
the laboratory.

http://www.verilog.com/
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2.4.3 Genetic mapping tools

Genetic technology mapping tools automatically select genetic components from
library and integrate them together to achieve the desired functionality of a ge-
netic circuit. The mapping techniques, similar to those adapted in EDA and
software engineering, are mostly used to perform technology mapping of genetic
circuits. However, technology mapping of genetic circuit is much more computa-
tionally intensive as compared to the technology mapping of electronic circuits.
It is because the genetic components have different input and output signals as
opposed to electronic components which have the same physical quantity both
at input and output i.e., the voltage. Due to this, it is challenging to search
and connect the right components together which should not only be compati-
ble with each other, but also avoid unwanted cross-talk to achieve the desired
functionality.

Some of the tools which supports genetic technology mapping are BioJADE [47],
GEC [41], MatchMaker [48], SBROME [49], iBioSim [50], GeneTech [51] etc.
BioJADE and GEC use exact methods to find the optimal solutions. On other
hand, both MatchMaker and SBROME, use heuristic methods to find all possible
solutions quickly and then rank them by quality. iBioSim uses a similar Directed
Acyclic Graph (DAG) based approach for technology mapping which is used in
EDA [52]. It generates the DAG first and then perform matching and covering
to obtain the optimal solution. This tool is based on two assumptions; first,
the circuit generated from the library do not have feedback; and second, the
circuit components can be connected together if their molecular signals at input
and output are the same. However, GeneTech generates all possible solutions
using depth-first search approach. It starts off mapping the components at input
stage first and then search for the right components (from the gates library) that
can be connected in succession as a second stage, and so on. Unlike the first
assumption of iBioSim, GeneTech avoid using such components which makes
unintended feedback loops.



Chapter 3

Dynamic Virtual Analyzer
and Simulator (D-VASim)

Simulation and behavioral analysis of genetic circuits is a standard approach
of functional verification prior to their physical implementation. Many software
tools have been developed to perform in-silico analysis for this purpose, but none
of them allow users to interact with the model during runtime. The runtime
interaction gives the user a feeling of being in the lab performing a real-world
experiment. In this chapter, a virtual laboratory software tool named D-VASim
(Dynamic Virtual Analyzer and Simulator) is presented, which is developed as a
part of this thesis work. This tool provides a user-friendly environment to sim-
ulate and analyze the behavior of genetic logic circuit models represented in an
SBML format. Hence, SBML models developed in other software environments
can be analyzed and simulated in D-VASim. D-VASim offers deterministic as
well as stochastic simulation; and differs from other software tools by being able
to extract and validate the Boolean logic from the SBML model. D-VASim is
also capable of analyzing the threshold value and propagation delay of a genetic
circuit model.

The work presented in this chapter has been published in the following peer-
reviewed workshop and journal

[16] Hasan Baig and Jan Madsen, "D-VASim – An Interactive Virtual Labora-
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tory Environment for the Simulation and Analysis of Genetic Circuits", Bioin-
formatics, vol. 33, issue 2, pp. 297–299, 2016.

[53] Hasan Baig and Jan Madsen, "D-VASim: Dynamic Virtual Analyzer and
Simulator for Genetic Circuits", 7th International Workshop on Bio-Design Au-
tomation (IWBDA), pp. 48–49, 2015.

3.1 Motivation

In the wet lab, biologists are either provided with the ready-made biological
model available in a test tube or are given a specification/recipe from which to
prepare the model in the lab. Their duty is to analyse the model and verify its
functional behavior. This analysis is done interactively, among other things, by
increasing the molecular concentration of input species at any instant of time and
observing the effects. This process motivated us to develop D-VASim, a virtual
laboratory environment where a user can perform interactive experiments by
varying the molar concentration of external signals during runtime.

The SBML and Cell Mark-up Language (CellML) [54] are the two standard
methods of representing biological models in a machine-readable form, which
enable models to be shared and published in a way that can be used by different
software tools. SBML is supported by most relevant tools for synthetic biology.
An SBML file holds the model information including species, reaction parame-
ters, kinetic laws, initial concentrations etc. Beside these modular descriptions
of a bio model, SBML also allows a user to model a sequence of input patterns
in order to capture more behavioral details. This is done through events, which
describe the instantaneous, discontinuous state changes in the model [9]. For
example, in genetic circuits, events are used to trigger the concentration of any
input species to a certain level, at a specific point in time, and to observe the
effects on the concentration of output species. Since events are predefined and
cannot be changed during runtime, the output of a genetic logic circuit will be
analyzed only for defined events. In order to observe the complete behavior of
an output of a genetic logic circuit, a different set of input conditions, i.e., when
to change what input to which level, must be defined in each event. Even for
moderate sized genetic logic circuits, capturing all the combinations of inputs
and concentration levels may require a very large number of events to be defined
and simulated.

On the other hand, a runtime interaction capability with the model is more
suitable to make direct changes in the concentration of input species at any
instant of time to observe the model’s behavior. This not only helps the user
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to analyze the model easily by triggering the concentration of input species to
any level and at any instant of time, but also makes a user free of defining
a long list of events for all the possible combinations of inputs in the SBML
description. Furthermore, the interactive simulation enables a user to receive
feedback in parallel with their experimental intervention, which enables certain
types of learning and optimization that would not be possible otherwise.

Besides giving a biologist the feeling of being in the lab, D-VASim may also
be useful to help early-stage researchers and students, with less experience of
biology, to get an intuitive feeling of the underlying biological processes and their
interactions. D-VASim can play a vital role for educating inexperienced users
to observe the live biological phenomenon in a virtual laboratory environment
without being afraid of overreaction and mishandling of the apparatus.

3.2 Methodology and Experimental Approach

D-VASim is developed on the LabVIEW (Laboratory Virtual Instrument Engi-
neering Workbench) programming platform, which is a graphical programming
language commonly used for rapid development of instrumentation systems for
data acquisition, instrument control, and industrial automation (www.ni.com).
The basic flow of the proposed virtual simulation and analysis environment is
shown in Figure 3.1.

Figure 3.1 shows that the SBML model of a genetic circuit is first loaded in D-
VASim, and the components of an SBML model can be optionally analyzed in
a user-friendly manner. Then a user can generate a separate virtual instrument
(VI) to perform ODE and stochastic simulations. These VIs help a user to
observe the reactions graphically and interact with the model at run-time. This
process is equivalent to setting up an apparatus for testing and experimentation
of a model in the wet-lab.

For stochastic simulations, the timing analysis of a genetic circuit can also be
performed if they are not known. The timing analysis helps a user to analyse the
threshold value and the propagation delay of a genetic circuit model. If a user
already know the threshold value and propagation delay of a circuit, the genetic
circuit model can be analyzed by interacting with the model during run-time.
This run-time interaction allows a user to change the concentration of input
species and the parameter values at any instant of time and observe the change
in circuit’s behavior alongside.

Once all the possible input combinations are applied carefully, a user can ana-

www.ni.com
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Figure 3.1: A work flow diagram of D-VASim showing how it can be used for
simulation, analysis and verification of genetic logic circuit models.
Elliptical nodes represent the steps to be performed by a user; rect-
angular nodes represent the automated processes, and the dotted-
parallelogram shows the output from the previous stage.

lyze/verify the logical behavior of either a complete circuit, or any intermediate
components of a circuit. The results of this analysis comes out in the form of a
boolean expression. The virtual instrument generated by D-VASim, for stochas-
tic and ODE both, also logs the simulation data for analysis and retrieval of the
user-session at a later stage.
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3.2.1 SBML support

D-VASim supports the latest SBML format level 3, version 1 (l3v1) core1. It
processes the SBML file using the JSBML library [55], and extracts and presents
the information of all components in a tabular format, as shown in Figure 3.2.
This figure shows the first interface which a user see after initializing and loading
the SBML model in D-VASim. Each tab describes the corresponding SBML
component in a user-friendly manner. For example, the selected tab shown in
Figure 3.2 depicts the information of Reactions defined in the SBML file of
the genetic AND gate model [21]. It not only shows the kinetic reactions, but
also the ordinary differential equations, generated by D-VASim, to simulate the
deterministic behavior of this model.

Figure 3.2: The main interface of D-VASim showing how the components of
SBML file can be analyzed through a user-friendly interface.

3.2.2 Virtual instrumentation

Depending on the option selected, D-VASim generates a virtual instrument for
the deterministic or stochastic analysis separately. Once the instrument is gen-
erated, the user can analyze the model by varying those species concentrations,

1D-VASim does not currently support SBML packages. The complete list of supported
SBML components are declared in the Read Me file in the D-VASim download package.
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which act as external modifiers or external inputs. For example, selecting the
Generate SSA VI option (shown in Figure 3.2) generates the virtual instrument,
shown in Figure 3.3, to perform the stochastic analysis of the genetic logic circuit
described in the SBML file.

Figure 3.3: Virtual instrument showing the stochastic simulation traces of the
genetic AND gate (shown in Figure 3.5) obtained from [21].

The SBML file contains the complete list of species involved in the circuit model
as well as the species acting as the modifiers to the specific kinetic reaction. It
does not, however, specify explicitly which species acts as external inputs to the
entire circuit model. D-VASim identifies the external species first by arranging
the names of all modifiers species and the products species of each reaction in
two separate lists, and then search for the species common to both of them.
The modifier species, which is present in the list of products, indicates that it is
a product of an underlying reaction and, hence, is not applied externally. The
species, which are present in the list of modifiers but are not in the list of any
reaction products, are those acting as external inputs (or external modifiers) to
the circuit.

The above process is explained in the example list of reactions shown in Figure
3.4. There are three species in this figure – M1, P2 and M2, which act as
modifiers to the reactions 2, 3 and 4, respectively. The species P2 is modifying
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Figure 3.4: Example reactions explaining the identification process of the ex-
ternal modifiers.

the reaction 3, but it is the product of the underlying reaction 2; therefore, it
cannot be considered as an external modifier. The rest of the species in the list of
modifiers i.e. M1 and M2, are those that are acting as external modifiers because
none of them are the products of any of the reactions, and thus considered as
external inputs. When the external modifiers or inputs are identified, D-VASim
creates the control knobs for them to let a user vary their concentration levels
during the run-time simulation. It is also possible in D-VASim to create the
control knobs for the specific species (see Appendix E for details).

The virtual instrument for each model generated by D-VASim looks similar to
a physical instrument, which serves as a standalone simulation tool for that
specific model and can be used later without having its SBML file. It can be
used to interact with the model by tuning the input concentration levels with
the help of control knobs and observing the effects graphically. This run-time
interaction with the model also helps users to trigger the concentration of input
species to any level at any instant of time without defining the long list of events
in an SBML file. In a similar way that input concentrations can be changed
using control knobs, the parameters editor can be used to vary parameters, like
degradation rate, temperature, etc., during run-time and observe their effects
graphically. Furthermore, D-VASim also allows a user to simulate events defined
in the SBML file.

Unlike wet-lab experimentation, a user may speed-up or slow-down the reactions
(for stochastic simulation) with the help of numeric speed control displayed
on each virtual instrument (see Figure 3.3). Moreover, when the simulation is
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stopped by a user, the simulation data and the screen shot of a graphical window
are stored automatically in the default application folder.

3.2.3 Virtual experimentation

The Gillespie’s direct stochastic simulation algorithm (SSA) [56] is implemented
to capture the stochastic nature of the biological models described in the SBML
file. For deterministic simulations2, D-VASim supports ten different types of
continuous solvers (see Appendix E).

Figure 3.5 shows the genetic AND gate circuit, constructed with the genetic
NAND and NOT gates [21]. Figure 3.5(a) depicts the SBOLv diagram of genetic
AND gate in which P1, P2 and P3 corresponds to the promoter regions of DNA.
Figure 3.5(b) and (c) shows the circuit schematic and the truth table of genetic
AND gate respectively. In this example, when two proteins, LacI and TetR, are
present in the significant amount within the cell, they inhibit promoters P1 and
P2 to produce the output protein CI. When the concentration of CI falls below
a certain level, promoter P3 is activated and produces an output, i.e. green
fluorescent protein (GFP).

Figure 3.5: Genetic AND gate circuit [21]. (a) SBOLv diagram. (b) Circuit
schematic. (c) Truth table.

2Deterministic simulation is tested with the first 400 cases of SBML benchmark suite, and
it produced the correct results for all of the supported components in D-VASim.
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The interactive stochastic simulation traces of the genetic AND gate model, in
D-VASim, is shown in Figure 3.3. D-VASim identified the external modifiers
(or external inputs), LacI and TetR, and created control knobs to let a user
control their concentration levels during run-time simulation. The simulation
traces shown in Figure 3.3 indicates that the user varied the concentration levels
of input species at different instants of time and in different combinations. The
concentration of CI is suppressed, when the concentrations of both LacI and
TetR are present in a significant amount in the cell at the same time (between
2500-4700 time units). When the concentration of CI falls below a certain level,
the promoter P3 is activated and the GFP is produced, thus exhibiting the AND
logic in the cell, as shown in Figure 3.3.

3.2.4 Logic verification and timing analysis

Besides interactive simulation of any SBML-based model, D-VASim is also capa-
ble of verifying the logical behavior of a genetic circuit model by extracting the
observed Boolean logic function from the simulation data. This functionality is
useful in two ways – first, it allows a user to verify circuits, built by cascading
several genetic logic circuits; secondly, it helps a user to extract the Boolean
logic of a model even when a user does not have any prior knowledge about
the model’s expected behavior. The details of this functionality is presented in
Chapter 5.

In order to obtain the correct Boolean logic, all possible input combinations must
be applied in a significant amount to trigger the circuit’s output. To determine
which concentration level should be considered logic 0 and 1, D-VASim is able to
obtain the threshold value and propagation delay of a circuit, which is described
in details in Chapter 4.

3.3 Discussion

D-VASim is in the process of continuous development and has been contin-
uously upgraded to higher versions. The latest version of D-VASim can be
downloaded from http://bda.compute.dtu.dk/downloads/d-vasim/ and the
video demonstration of the complete simulation flow can be seen at http:
//bda.compute.dtu.dk/user-manuals/d-vasim/.

Besides testing the D-VASim’s ODE simulation environment with the SBML
benchmark suite, the ODE and the stochastic simulations of D-VASim was also

http://bda.compute.dtu.dk/downloads/d-vasim/
http://bda.compute.dtu.dk/user-manuals/d-vasim/
http://bda.compute.dtu.dk/user-manuals/d-vasim/
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tested with the genetic circuit models presented in [21]. Appendix A contains
the screen-shots of ODE and stochastic simulations results of the five genetic
circuit models [21], taken in D-VASim.

The next Chapter 4 describes how the threshold value and the propagation delay
of these genetic circuit models can be analysed. Such analyses can then be used
to obtain the Boolean behavior (Chapter 5) of a genetic circuit model.



Chapter 4

Genetic Circuits
Timing Analysis

Analogous to microelectronics, where timing analysis is a crucial requirement
for ensuring the correct operation of a logic circuit, the timing analysis of genetic
logic circuits may become an essential design characteristic as well. The transis-
tors, used in the composition of digital logic gates, have well-defined threshold
voltage values [57], which categorize the logic levels 0 and 1. Hence, the timing
characteristics, like propagation delay, hold time, setup time etc., are all well
characterized.

However, this is not the case in genetic logic gates, where each gate is composed
of different proteins and promoters, resulting in different threshold concentra-
tion values. Furthermore, digital logic gates have the same physical quantity,
i.e., voltage, as their input and output. On the contrary, genetic logic gates
use different biological components including proteins, RNA, inducers, etc.,
to control the regulation of the corresponding output biological components.
Additionally, signals in electronic circuits propagate in separate wires that do
not directly interfere with each other. However, in genetic circuits, signals are
molecules, drifting in the same volume of the cell, and hence easily merge with
the concentration of other compounds, resulting in crosstalk with the neighbor-
ing circuit components. These facts make the timing analysis of genetic circuits
very challenging.
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Challenges of crosstalk have also been encountered in microelectronics; how-
ever, most of these have been solved through enhanced fabrication processes
or through the development of advanced electronic design automation (EDA)
tools. Similarly, advances in GDA tools may help to address these challenges,
resulting in the reduction of the design complexity of genetic logic circuits.

In this chapter, a methodology is presented to perform the timing and threshold
value analysis on genetic logic circuits. This methodology is implemented as
a plug-in tool in D-VASim. We demonstrated that it is possible to perform
the timing analysis of a genetic circuit and that it can be used to achieve the
desired circuit behavior. The timing analysis is performed on some of the genetic
circuit models proposed in [21] and [14], and the sensitivity of circuit timings,
in relation of varying different circuit parameters, is investigated. In particular,
the timing sensitivity due to the degradation rate (kd) and the concentration of
input proteins is studied.

The work presented in this chapter has been published in the following peer-
reviewed workshop and journal.

[39] Hasan Baig and Jan Madsen, "Simulation Approach for Timing Analysis
of Genetic Logic Circuits", ACS Synthetic Biology, 2017.

[58] Hasan Baig and Jan Madsen, "Logic and Timing Analysis of Genetic Logic
Circuits using D-VASim", 8th International Workshop on Bio Design Automa-
tion (IWBDA), pp. 77–78, 2016.

4.1 Methodology

As mentioned in Chapter 3 that the threshold value and timing analysis can be
used to verify the Boolean function of a genetic logic circuit by extracting the
observed logic behavior from the simulation’s results. To analyse the Boolean
logic, the genetic logic circuit model can be considered as a black box. Apply-
ing all possible input combinations and observing the output can result in the
combinatorial behavior of this black box. For instance, if a circuit contains two
inputs, then there are four possible input combinations; 00, 01, 10 and 11.

The key challenge in determining the correct Boolean logic function from the
analog simulation data is to categorize the input concentration levels into logic
0 and logic 1. As mentioned earlier, this is similar to digital electronic circuits
in which a certain threshold value of input voltage differentiates logic levels 0
and 1 [57]. Digital electronic circuits are also analog in nature, but a logical
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abstraction has been employed to reduce the complexity of circuits. Similar
abstraction has to be employed to categorize the genetic concentration levels
into logic 0 and 1. To categorize these concentration levels into logic 0 and 1,
the threshold value for the concentration of input proteins, which significantly
affects the concentration of output protein of a genetic logic circuit, must be
identified.

As different proteins in a genetic circuit may have different threshold concen-
tration values, the proposed approach calculates a single threshold value of the
input proteins that trigger the output, instead of estimating the threshold values
of each input protein separately. For instance, in the genetic AND gate (Fig-
ure 3.5), the algorithm estimates the threshold value of LacI and TetR, which
together trigger the production of GFP, rather than evaluating the separate
threshold values for each of them. It may be possible that the threshold value
of LacI is, for example, 13 molecules, and that of TetR is, say, 9 molecules.
In this case, algorithm tells that 13 molecules is the threshold value of an en-
tire circuit, which triggers the circuit output when the concentrations of input
proteins reach this level.

Consider another example of an OR gate in which input-1 triggers the output
if the molecular count is greater than 5 and input-2 triggers the output if the
molecular count is greater than 10. Setting the upper input threshold to 10
would give the correct answer, i.e. the gate remains off, if the input molecular
counts are (4,7). Now, if the input molecular counts are (7,4), then input-1
may trigger the output but it may not be considered logic 1 until the output
concentration increases above 10 molecules. It is observed, through simulations
that the triggered output for such scenarios is highly unstable (frequently os-
cillating between logic 0 and logic 1), and this region should be considered a
transition region. Therefore, instead of estimating the threshold values of each
input protein separately, the proposed approach estimates the global upper and
lower threshold values for all inputs.

Furthermore, the proposed approach considers the entire circuit as a black-box
and obtains the input threshold value that is required to trigger the final output.
Therefore, the threshold value and the number of intermediate circuit compo-
nents do not matter; the algorithm ensures that the estimated input threshold
value is sufficient to trigger the intermediate circuit components all the way from
input to the final output. However, the separate threshold values of intermedi-
ate circuit components can also be analysed in D-VASim (for more details, see
Appendix E or a video demo at http://bda.compute.dtu.dk/user-manuals/
d-vasim/).

http://bda.compute.dtu.dk/user-manuals/d-vasim/
http://bda.compute.dtu.dk/user-manuals/d-vasim/
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4.1.1 Preliminary analysis of threshold value

In order to understand the algorithm for estimating the threshold value, consider
the simulation traces of the genetic AND gate using iBioSim [17] shown in
Figure 4.1. It shows the results from running the stochastic simulation, of the
genetic AND gate for one (a) and fifty times (b) and (c). The unit of species
concentration used in the circuit models of [21] is the “number of molecules”.
Figure 4.1(a) shows that both of the inputs are triggered to 10 molecules, TetR
after 1000 time units and LacI after 2000 time units, and that the output is
highly stochastic, which makes it difficult to determine the input threshold value.
A smooth output curve is obtained by plotting the average of 50 runs, as shown
in Figure 4.1(b) and (c).

In Figure 4.1(b), it is seen that keeping the input concentrations to 10 molecules
causes the average output concentration to stay below the level of the input con-
centration. Upon increasing the input concentrations further to 13 molecules,
the average output concentration goes above the level of the input concentra-
tions, as depicted in Figure 4.1(c). The same analyses are also performed with
different concentration levels on different logic circuits. These analyses show a
relation between the input and output proteins of a genetic circuit. On the basis
of these analyses, an input-output relation of a genetic circuit can be defined in
terms of its threshold value as follows:

Definition 4.1 Threshold value: The minimum concentration of input
protein(s), which causes the average concentration of output protein to cross
the concentration of input protein(s).

In the example shown in Figure 4.1, the upper threshold value of input is 13
molecules; that is, the input concentration above 13 molecules is considered logic
1 and that below 10 molecules is considered logic 0. There is a transition region
between these two levels (not shown in Figure 4.1), where the average output
concentration is not clearly distinguishable with the input concentration level.
Hence, when the concentration levels of both inputs are 10 or fewer molecules
i.e. logic 0; the average output concentration remains low (logic 0), else it
goes high (logic 1) when the concentration of both inputs reaches 13 or more
molecules (logic 1). This relation of input and output concentration is justified
because, according to this definition, one do not need to care about how many
circuit levels are cascaded between input and output. It simply identifies the
input concentration required to trigger the final output. The same definition is
applicable to determine the threshold values of intermediate circuit components
separately.
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Figure 4.1: Preliminary analysis of a threshold value for the genetic AND gate
using iBioSim [17]. (a) Stochastic simulation results when run only
once. Average results of 50 runs (b) showing the lower threshold
value of inputs LacI = TetR = 10 and (c) the upper threshold
value of inputs LacI = TetR = 13.
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4.1.2 Preliminary analysis of propagation delay

Another important factor for automatically obtaining the correct Boolean ex-
pression from the simulation data is the propagation delay. Figure 4.2 shows a
zoomed-in version of Figure 4.1(c), which shows that the effect of changes in the
input concentration is reflected in the output concentration after a time delay of
approximately 700 seconds. That is, the output protein takes about 700 seconds
to cross the level of the input concentration when the inputs are triggered to
their threshold value. Thus, the propagation delay of a genetic circuit can be
defined as follows:

Definition 4.2 Propagation delay: The time from when the input con-
centration reaches its threshold value until the corresponding output concentra-
tion crosses the same threshold value.

Figure 4.2: Zoomed-in image of Figure 4.1(c) indicating the preliminary prop-
agation delay analysis using iBioSim. In this figure, the propaga-
tion delay is approximately 700 seconds.

Figure 4.2 shows that the output goes “high” after approximately 700 seconds
from the time when both inputs have reached the significant concentration level
(13 molecules). During these 700 seconds, the output remains low and hence
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does not produce the expected logic output. It also means that, during simu-
lation (or even during experimentation in the laboratory), the user should not
change the inputs before this time delay has elapsed.

In order to identify the threshold levels of a circuit in the laboratory, the biolo-
gist could perform this analysis by adding the input concentration periodically
to see if it significantly affects the concentration of the output. To identify
the input concentration, which significantly affects the output, different input
combinations must be tried with different concentration levels, which is a very
tedious and time consuming task to do in the laboratory. Furthermore, as men-
tioned above, it must be ensured that each input combination is applied after a
certain time delay.

4.1.3 D-VASim plug-in for threshold value and propaga-
tion delay analyses

An algorithm is developed to automate the abovementioned iterative processes
of identifying the threshold levels and propagation delays. This algorithm is
integrated as a plug-in tool in D-VASim. Since the behavior of a genetic circuit
is well described by stochastic simulations, therefore the proposed method is ap-
plied on the stochastic behavior of a genetic circuit obtained from the Gillespie’s
stochastic simulation algorithm [56,59].

The algorithm for the threshold value and propagation delay analysis is shown
as a pseudo-code in Algorithm 4.1. The algorithm is initialized by some user-
defined parameters as indicated in Algorithm 4.1. Cin specifies the value of the
input protein(s) concentration, from which the tool should start its threshold
analysis. The Inc is the value with which the input concentration is increased
for each iteration, in order to observe if the resulting concentration level of in-
put affects the concentration of the output. The CinE value specifies the input
concentration at which the algorithm should stop the analysis of the threshold
value. The algorithm also requires an initial assumption of the input-output
propagation delay value, TD. It is already mentioned earlier that the input-
output propagation delay value is critical for extracting the correct logic behav-
ior of a circuit model. Thus, it is necessary to wait until this time value has
elapsed before applying the next combination of inputs. Since the time delay
value is unknown for the automatic analysis, the tool begins the analysis with
an assumed value and later estimates the approximate one. Assuming a higher
value increases the estimation time but gives a better estimation of the threshold
value.
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Algorithm 4.1: Threshold value and propagation delay analysis.
input : Cin, Inc, CinE , TD, ST , i, OS , VT , OCDUTh, OCDLTh

1 begin
2 for all input combinations do
3 if (Current input concentration level (CinC) == 0) then
4 Determine the initial output concentration (COinit);
5 else
6 while (CinC ≤ CinE) do
7 while (Current Time 1 (TC1) ≤ TD) do
8 Execute simulation
9 if (COs > CinC)** then

// COs = concentration of selected output specie
10 PT = CinC // PT = possible threshold value

// Verification process
11 for (number of iterations i) do
12 while (Current Time 2 (TC2) ≤ VT ) do
13 Execute simulation
14 if (TC2 > ST ) then
15 Trigger the input to the value of PT
16 end
17 Store the output concentration data in array
18 end
19 Take the running average of all output i arrays
20 end
21 Estimate time delay TE and consistency OCE

Terminate current while loop
22 end
23 end
24 if (COs > CinC)** then
25 if (OCE > OCDUTh) then
26 Consider lower threshold value = 0 if not already

found Return the results and terminate all loops
27 else if (OCE < OCDLTh) then
28 Save lower threshold level and resume analysis
29 else
30 Resume Analysis
31 end
32 end
33 CinC = CinC + Inc
34 TC1 = TC2 = 0

35 end
36 end
37 end

// **Valid when COinit is low, For high COinit, it will become
// (COs < CinC)

38 end
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For a simulation, if every node of a genetic circuit model is not initialized to a
stable value, then the output of some of the genetic circuits are initially unstable
and exhibit unexpected behavior for a certain amount of time. For example, in
the simulation traces (see Figure 4.1) of genetic AND circuit (shown in Figure
3.5), the initial values of LacI and TetR are zero, but when the simulation starts,
the output, CI, of a first circuit’s component (i.e. NAND gate, see Figure 3.5)
is also zero, which enables the inverter and produces GFP until the input value
0 propagate through the NAND gate.

In order to perform correct timing analysis, it is therefore required to initialize
all the circuit nodes to a stable value. If the values are not initialized, it is
important that the algorithm should wait for the circuit’s output to become
stable first. The parameter, ST (Settling Time), helps the user to specify a
rough value for the initial time during which the circuit’s output is expected to
become stable. When the algorithm performs the automatic analysis, it waits
for the value defined for ST to allow the circuit’s output to become stable first
and then triggers the input combinations to determine the appropriate threshold
and propagation-delay values of a circuit. For small genetic circuits, containing
a single gate only (for example, NOT, NAND and NOR), and having a low
degradation rate (kd ≈0.0015), it is observed through simulations that these
circuits usually take at least 1000 time units to become stable. This implies
that, for these circuits and kd, the ST parameter should not be less than 1000
time units. If a value less than this is chosen, then the algorithm will not be
able to produce the correct estimation.

The algorithm further verifies the obtained threshold value by iterating the
model for a predefined number of iterations, i. During this iterative verification
process, the algorithm obtains the average propagation delay by running the
model for the length of time defined by VT for each iteration i. It also identifies
the extent to which the average output for the estimated threshold value is
consistent. In order to understand this procedure, lets assume the parameters
values shown in Table 4.1. The unit for concentration here is the “number of
molecules”.

Now consider the sample time scale plots shown in Figure 4.3. To find the
threshold value of the input concentration that significantly affects the output
concentration, a specific input combination should be applied. This means that
all the possible combinations should be checked one by one until the specific
combination of inputs that triggers the output concentration is found. For logic
circuits like AND, NAND, OR, NOR and NOT, the output transition can be
observed by triggering both the inputs to the same concentration level at the
same time. The algorithm, therefore, triggers both the inputs combinations
from 00 to 11 first, instead of following the traditional pattern of 00 –> 01 –>
10 –> 11. Because of this, the algorithm estimates the threshold value of some
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Table 4.1: Sample values of parameters required for threshold value and timing
analyses.

Parameter name Value
Cin 0
Inc 2.75
CinE 15
TD 800
ST 200
i 10
VT 1000
OCDUTh 90
OCDLTh 30

circuits, for example AND gate, relatively faster.

Figure 4.3 shows how the process of automatic threshold value and timing anal-
ysis takes place by the proposed algorithm. If more than 90 percent of the
average output data, between instants t2 and t3, remains above the input level,
the input concentration level is considered to be the upper threshold level. Sim-
ilarly, if less than 30 percent of the average output data remains above the input
level between instants t2 and t3, the input concentration level is considered to
be the lower threshold level. The propagation delay is measured from the in-
stant when the input is triggered, from its lower threshold level to its expected
upper threshold level, to the instant when the average output crosses the same
input level.

Figure 4.3(a) shows the case of input logic combination “11”, i.e., when both
inputs are triggered high. According to the settings shown in Table 4.1, the
algorithm runs the model first by keeping the input concentration zero until the
assumed time delay of 800 time units has elapsed. In order to determine if the
output concentration crosses the level of input concentration as defined in Def-
inition 4.1, or in other words, to determine whether the output concentration
goes above the input concentration level or falls below it, the initial concen-
tration of output protein at input logic level combination “00” must be known.
Therefore, during the first 800 time units (TD), the average of the initial output
concentration is obtained by keeping the concentration of both inputs zero i.e.
logic 0. On the basis of this average initial output concentration, the estimation
of output concentration crossing the input concentration level is performed.

Once the assumed time delay has elapsed, the input concentration level is incre-
mented to the next level, indicated by line 33 in pseudo-code 4.1. The example
case shown in Figure 4.3(a) portrays the scenario of an AND gate where the



4.1 Methodology 43

Figure 4.3: Sample time scale plots of the genetic AND gate. (a) First loop
to detect the threshold value. (b) Separate loop to verify the
estimated threshold value repeatedly for predefined number of it-
erations, i (10 times in this case).

initial average output of a circuit (with both input concentrations at zero) is
zero. The algorithm also works for the case where the average initial output
concentration is high, for instance, a NOT gate, by iteratively increasing the
input concentration and checking if the output concentration falls below the
concentration level of input. Note that this still satisfies Definition 4.1.

Point t1, shown in Figure 4.3(a), implies that the algorithm halts the current
loop execution when the value of the output protein crosses the input concen-
tration level. This anticipates the possible threshold value (5.5 molecules in this
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example) as it makes the output concentration cross the input concentration
level. To verify this threshold value, the algorithm executes a separate loop to
run the simulation of the circuit model for the defined number of iterations, 10
times in this example, as shown in Figure 4.3(b). This process executes in lines
11-20 in pseudo-code 4.1.

In order to measure the correct propagation delay, it is necessary to trigger
the input protein, particularly from zero to the expected threshold level, only
when the model’s initial output is settled. As mentioned before, the outputs
of some circuits are unexpectedly high which gradually settles to zero. This
scenario is depicted in Figure 4.3(b). Therefore, the initial concentrations of
input proteins must not be triggered to their expected threshold level until the
output becomes stable. As mentioned above, the parameter Settling Time, ST ,
lets the user provide a period of time by which the initial output is expected
to become stable. This is the time at (or after) which the algorithm triggers
the inputs, to their expected threshold level, to determine the time it takes to
trigger the output concentration. If a low value is assumed for ST , the algorithm
may produce incorrect propagation delay. For example, in Figure 4.3(b), if a
value 50 would be chosen as a settling time, the inputs would be triggered at
50 time units. At this instant, when the inputs are triggered to their expected
threshold level, the concentration of output is already above the threshold level
and thus the algorithm would end up estimating the propagation delay to zero.
Therefore, depending on the complexity of a circuit and the degradation rate
(kd), this value should be chosen carefully.

The simulation output data from all 10 iterations are averaged to obtain the
average estimated propagation delay and the inconsistency present in the output
plot for the estimated threshold values. The inconsistency, illustrated in Figure
4.3(b), is calculated by determining the size of the average output data, which is
less than the input concentration level immediately after the output crosses the
input level for the first time, i.e. the inconsistency is estimated between points
t2 and t3 as shown in Figure 4.3(b). In other words, for examining the upper
threshold level, the idea is to determine how consistently the average output
data remains above the input concentration level between points t2 and t3.
The algorithm accepts the estimated threshold value based on the user-defined
parameter, % acceptance of consistency, shown as OCDUTh (for upper threshold
level) and OCDLTh (for lower threshold level) in pseudo-code 4.1. The results
are accepted if the estimated consistency is greater (for upper threshold) and
less (for lower threshold) than the user-defined values, OCDUTh and OCDLTh,
respectively. This is shown in the lines 25-30 in pseudo-code 4.1. The results are
otherwise discarded and the algorithm resumes the analysis from point t1, shown
in Figure 4.3(a). The percentage output consistency is calculated according to
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equation 4.1.

% output consistency =
Ot2−t3 −D

Ot2−t3
(4.1)

where:

Ot2−t3 = Size of the average output data between instants t2 and t3
(Figure 4.3(b)).

D = Deviation, which defines the number of times the output data is
found to be deviated from the expected (greater or less than the)
threshold value.

The quantity D in equation 4.1 is considered to be different in two different cases,
i.e., when the initial input concentration is found low, then D in eq. 4.1 indicates
the number of times the output data is found “less” than the threshold value, as
in the case shown in Figure 4.3. Else, if the initial input concentration is high,
then D signifies the number of times the output data is found “greater” than
the threshold value. For the sample parameters (Table 4.1) used for the sample
plots shown in Figure 4.3, the algorithm estimates the input concentration as the
upper threshold level if the output consistency is 90 percent or above. Likewise,
the input level is assessed as the lower threshold level if the estimated output
consistency is less than 30 percent.

4.2 Experimentation by Simulation

The timing analysis is performed on the nine genetic logic circuit models (Figure
4.4) proposed in [21] and on one of the SBML models of real genetic circuits
[14]. The genetic implementation and the description of these circuits can be
found in [21] and [14], respectively. These circuits are considered fairly complex
in the context of genetic circuits, because each gate is composed of several
genetic components. Their kinetic interactions are described by a number of
mathematical equations in the SBML model. The SBML models of these genetic
logic circuits are run on D-VASim and their threshold value and propagation
delay analyses are performed.

In microelectronic devices, the behavior of a circuit depends on many different
parameters. For example, in MOS transistors, the drain current depends on
the width and length of gate, oxide capacitance, gate-to-source voltage etc. [60].
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Figure 4.4: Experimental genetic circuits, obtained from [21], for timing anal-
ysis. More complex circuits, (f)-(i), are further categorized into
three intermediate levels P1-P2, P2-P3 and P3-P4. The timing
analyses are performed on these three levels separately, which are
mentioned in Table 4.2. The SR latch shown in Ckt 7 is asyn-
chronous and do not require a clock input.

Similarly, the behavior of a genetic circuit also depends on different parameters,
including degradation rate, forward repression binding rate, forward activation
binding rate etc. These parameters of a genetic circuit model are described in
the SBML file. We carried out simulations on these ten genetic circuit models
by observing the effects of varying the degradation rate (kd) on the propagation
delay and the threshold value of a circuit.

The degradation rate is the rate at which a chemical compound (e.g. a protein) is
decomposed into intermediate products, i.e., a produced protein will be effective
only for a certain period of time determined by the degradation rate. A zero
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degradation rate means that the protein does not degrade and hence will be
effective forever. This is an often-used assumption, which clearly is not realistic,
which is why understanding the impact of the degradation rate on the timing
analysis is an important investigation.

The threshold value and propagation delay of each circuit is obtained for five
different values of kd (0.0015, 0.0055, 0.0095, 0.0135, 0.0215). These set of
values are chosen based on a degradation rate value used in [21]. It has been ex-
perimentally observed that the variation in degradation rate (kd) greatly effects
the settling time, ST , of an output. Hence, for each circuit, we chose different
parameter values (shown in Table 4.1), except the number of iterations, i, and
% acceptance of consistency for upper and lower threshold values (OCDUTh and
OCDLTh), which were set to 5, 70 and 30, respectively for all circuits. We pur-
posely used OCDUTh = 70 percent in order to demonstrate that it is affected
by threshold values.

Figure 4.5: Results of threshold value and propagation delay analysis of Ckt
8 generated by D-VASim for kd = 0.0135. The estimated upper
and lower threshold values are 6.5 and 3.25 molecules with 98.4
percent and 25.5 percent consistency, respectively. The approxi-
mate input-output propagation delay value is 620 time units with
±190.08 standard deviation.

Figure 4.5 shows how D-VASim reports the outcomes of a threshold value and
propagation delay analysis once the algorithm finishes execution. This figure
shows the threshold value and timing analysis results obtained for Ckt 8 (Figure
4.4(h)) when degradation rate (kd) was set to 0.0135. It indicates that the
estimated upper and lower threshold values are 6.5 and 3.25 molecules with
98.4 percent and 25.5 percent consistency, respectively. It also calculates the
approximate input-output propagation delay value to 620 time units with a
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Figure 4.6: Analog simulation traces of Ckt 8 with its corresponding digital
waveforms for kd = 0.0135.

standard deviation of ±190.08 , in this case based on five iterations. When the
results are obtained, the user may interact with the model during run time;
apply all the possible input combinations in a significant amount, and match
the propagation delay with the one estimated by D-VASim.

Figure 4.6 shows the simulation traces of the same Ckt 8 with kd = 0.0135. To
keep this chapter concise, only the screen shots of the analysis results and graph-
ical simulation of Ckt 8 (for kd = 0.0135) are included. However, the complete
experimental data of all circuits is available in Appendix B. In Figure 4.6, the
circuit’s inputs are A and B; and the output is C. It can be observed that the
initial concentration of output protein, C (shown as green plots), is high above
the threshold value and it takes approximately 400 time units to settle down.
Furthermore, when the input concentrations are triggered to their lower thresh-
old level, i.e. 3.25 molecules, the output concentration remains zero. When
the input concentration levels are triggered sharply to their estimated threshold
value i.e. 6.5 molecules, the output of a circuit triggers high approximately after
800 time units.
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4.2.1 Effects of varying kd on the threshold values and
propagation delays

Figure 4.7 shows the graphical plots of timing analysis of all circuits. The val-
ues of propagation delays are plotted along the y axis on the left-hand side.
The threshold values and percentage of output consistency for each value of
kd is plotted along the y axis on the right-hand side. The x axis contains the
degradation rate values. The general impression of these experiments is that the
propagation delay of genetic circuit decreases with the increase in degradation
rate (kd). This is expected because when the degradation rate is high, the pro-
tein degrades faster and thus contributes in the reduction of propagation delay.
However, the propagation delay does not seem to have an inverse relation with
the degradation rate. The propagation delay for all circuits dropped consider-
ably with the first decrement of 40 × 10−4 in kd ; and then it decreases slowly
for the next higher values of kd.

The standard deviation in propagation delays, calculated for the specified num-
ber of iterations (i.e. five in these experiments), is also included for each circuit
in the plots shown in Figure 4.7. It can be noticed that the propagation delay of
a circuit is more variable for low degradation rates. The variation in the prop-
agation delay decreases with the increase in degradation rate; however, a high
degradation rate makes the cascaded circuit’s output unstable. This is because
the genetic components decay quickly when the degradation rate is high, thus
causing the circuit’s logic to switch faster even when a small input concentration
is applied. This also reduces the transition region between the upper and lower
threshold levels, as shown in the data of Ckt 8 in Figure 4.7. However, it can
also be noticed for Ckt 8 that a transition region is small for kd = 0.0135 (i.e.
3.25) as compared to kd = 0.0215 (i.e. 6.5). This is because, at kd = 0.0215, Ckt
8 becomes unstable and produces glitches of high output even when the input
concentration levels were kept to zero (see simulation traces in the Appendix
B.8). This is the reason why the lower threshold value of Ckt 8 at kd = 0.0215
is estimated to be zero. It has been observed that the lower threshold value of
all circuits approaches zero with the increase in kd.

4.2.2 Effects of varying threshold values on the propaga-
tion delays

Beside these analyses, some other interesting facts of varying the upper threshold
value on the propagation delay of a circuit has been observed. It is noted that
the smaller concentrations of input protein have a weak impact on the output
protein, which is analogous to the behavior of microelectronic devices. For
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instance, in MOS transistors, weak applied VGS (gate-to-source voltage) results
in the weak drain current, ID [60]. This effect can be observed in the graphical
plot of Ckt 4 in Figure 4.7. In this plot, for kd = 0.0215, the threshold value of
a circuit is reduced to 5 molecules as compared to its previous data point, which
is 10 molecules at kd = 0.0135. Due to the increment in kd, the propagation
delay at this point is supposed to decrease if the input threshold value remains
the same. However, it slightly increases because the input threshold is reduced
to 5 molecules. This effect has been observed on other circuits as well during the
run-time simulation. For instance, increasing the applied input concentration to
60 molecules for Ckt 7 at kd = 0.0015, the propagation delay is decreased from
6156 to 5570 time units (see Appendix B, Figure B.7a). This inverse relation
between propagation delay and threshold value holds true to a certain extent,
and then further increment or decrement in the applied input concentration
does not affect the propagation delay.

4.2.3 Effects of varying threshold values on the % output
consistency at high kd

For higher values of kd, the output consistency of the upper threshold level is
increased by reducing the threshold value. This is shown in the plots of Ckt 9 in
Figure 4.7. The output consistency of the upper threshold level, at kd = 0.0135,
was reduced to 49 percent (not shown in Figure 4.7) when the threshold value
was set to 30 molecules. Then the output consistency of Ckt 9 was analyzed, at
kd = 0.0215, by keeping the threshold value to the same level, i.e. 30 molecules
(not shown in Figure 4.7), and noticed that the output consistency was decreased
to 2 percent. Then the threshold value was decreased to 6.5 molecules and the
output consistency was increased to 75.5 percent, as shown in Figure 4.7.

4.2.4 Other parameters effecting the threshold values

The values of upper and lower threshold levels also depends on the parameter,
Inc (see Table 4.1), which specifies the input concentration to be added to the
previous input concentration level during each iteration, i. For example, in the
case of Ckt 2 and Ckt3, the value of Inc was set to 30 at kd = 0.0015. The
algorithm thus triggers the input concentration from 0 to 30 directly during
the analysis. Because of this, the average output was found to be 100 percent
consistent for upper threshold level, which results in estimations of the upper
and lower threshold levels of 30 and 0 molecules, respectively. If a lower value
of Inc would be chosen, the results would be different but more precise.



52 Genetic Circuits Timing Analysis

4.2.5 Intermediate propagation delays

The intermediate delays of larger genetic circuit models are also analyzed by
splitting them into three points of measurements, as shown in Figure 4.4. The
propagation delays for each of these points are mentioned in Table 4.2. The
propagation delay, indicated by a point of measurement P1-P4 in Table 4.2,
is the entire circuit propagation delay. The reader should not confuse these
estimations with those depicted in Figure 4.7. The results mentioned in Figure
4.7 are estimated by D-VASim using the proposed algorithm; and the results
mentioned in Table 4.2 are those that are obtained by a user through a run-time
stochastic simulation.

Table 4.2: Intermediate propagation delays of genetic logic circuits.

kd Propagation delays (s)
(x10−4)

Points of
measurement Ckt 6 Ckt 7 Ckt 8 Ckt 9

P1 - P2 1763.12 3243 1863 4379
P2 - P3 1067.91 4764 1237 3854
P3 - P4 554.53 1140 2500 129215

P1 - P4 3350 5904 5500 6463
P1 - P2 382 603 394 936
P2 - P3 193.7 973 425 395
P3 - P4 246.4 410 405 17155

P1 - P4 805 1400 1224 1646
P1 - P2 80 340 122 441
P2 - P3 100 380 235 53.045
P3 - P4 180 280 235 6495

P1 - P4 360 664 631 1003
P1 - P2 83 230 39 311
P2 - P3 81 265 253 112
P3 - P4 54 240 279 330135

P1 - P4 215 506 573 878
P1 - P2 43 229 70 9
P2 - P3 70 173 103 120
P3 - P4 58 47 37 81.63215

P1 - P4 56.5 267.75 208 400

The argument that a circuit’s output becomes unstable for larger values of kd,
can also be supported by observing the intermediate delays of Ckt 6 for kd =
0.0215 in Table 4.2. As shown in Figure 4.4, Ckt 6 is composed of three inverters
connected back-to-back in series. When input protein LacI is triggered to its
threshold value, it suppresses the production of TetR. When the concentration of
TetR drops below its threshold level, it produces Cro, which in turn suppresses
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the production of output protein, GFP. However, the intermediate propagation
delays of Ckt 6 for kd = 0.0215 shows that when the input protein, LacI, is
triggered to the estimated threshold value, the overall output of a circuit, GFP,
is produced in 56.5 time units. However, one of the intermediate outputs, Cro,
is produced in a significant amount after ≈70 time units, which is greater than
the propagation delay of the entire circuit. This invalidates the desired circuit’s
behavior and makes the output unstable, which indicates that the circuit does
not behave as designed.

4.2.6 Experimentation on the SBML model of real genetic
circuit

The possibility of analyzing the SBML models of real genetic circuits is also
explored. The genetic AND gate circuit (composed of inverters and NOR gates)
from [14] is chosen for the experimentation. The genetic circuits presented
in [14] were first developed on a tool named Cello, which generates the SBOL
file. Unlike SBML, the SBOL representation does not describe the behavior of a
biological model. Therefore, the SBOL-SBML converter [61] is used to generate
the behavioral model of the above-mentioned real genetic AND circuit. This
SBOL-SBML converter is available as a plug-in in iBioSim [17], which uses the
default parameters while defining the reaction kinetics during the conversion
process.

Since, the actual parameters, like degradation rate, forward repression binding
rate etc., are not disclosed in [14], therefore the default iBioSim parameters are
used to perform the timing analysis of real genetic AND gate circuit. However,
the parameter values can always be changed, and new parameters can also be
added to observe more realistic results. Furthermore, the SBOL file generated
by Cello does not include the input sensor block of a circuit (which includes
the input inducers); thus these inducers are also not included during the SBOL-
SBML conversion process. Hence, we added the input inducers manually in the
SBML model using iBioSim, as shown in Figure 4.8. The components inside
the yellow-dashed box are manually added, and rest of the model is a result of
SBOL-SBML conversion process. In this figure, it is shown that when both of
the input inducers, aTc and IPTG, are present, they form a complex with their
corresponding regulators, TetR and LacI, respectively. These regulators then
gradually stop inhibiting their respective promoters, which eventually leads to
the production of the output, yellow fluorescent protein (YFP).

Figure 4.9 shows the timing analysis results of the SBML model of the genetic
AND gate circuit [14]. All these analyses for different degradation rates were
obtained within 30 minutes, and the simulations with all possible input combi-
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Figure 4.8: SBML design of the genetic AND gate circuit obtained from [14].

nations were performed within 10 minutes. This is obviously faster compared
to testing the model in a lab, where the models were first placed in the logic-0
state for 3 hours and then switched to other possible states, one by one, each
for another 5 hours [14].

Figure 4.9 indicates that the results of the genetic AND gate [14] are similar
to those obtained for the other 9 genetic circuit models [21]. In general, it is
observed that the propagation delay, threshold value, and the degradation rate
are all interlinked. The output of a circuit is stable for small values of kd but
it increases the propagation delay. The variation in the propagation delay is
also greater for small values of kd. On the other hand, the output of a circuit
becomes unstable for large values of kd but decreases the propagation delay.
Large values of kd also contributes to a reduction of threshold value to a certain
point. This is because the circuit becomes faster for large kd ; therefore, a small
input concentration is sufficient to trigger the output protein. The degradation
rate cannot be increased beyond a certain point, because it makes the output
highly oscillating. This implies that the threshold value of a circuit cannot be
decreased beyond a certain point. This corresponds to the scaling trends for
the MOSFET device, where the gate width cannot be reduced beyond a certain
number of nanometers.

4.3 Discussion

In this chapter, a methodology to perform the timing analysis of genetic logic
circuits is proposed, which is then implemented and tested in D-VASim. The
threshold value and timing analysis are performed primarily on entire circuits
instead of on each individual circuit component. However, D-VASim is also
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Figure 4.9: The effects of varying degradation rate (kd) on the propagation
delay and threshold value of the genetic AND gate circuit [14]. The
propagation delay of a circuit decreases with the increase in kd.
Also, low input concentrations are required to trigger the output
of a circuit at higher values of kd. Note: These results may differ
when the actual parameter values are used.

able to analyze the threshold value and timing analysis of individual circuit
components. In this work, D-VASim is shown to estimate the overall threshold
value of an entire circuit, which gives user a minimum value of input species
required to trigger the output of a genetic circuit.

The effects of circuits’ timings upon varying certain parameters are also ex-
plored. This may assist genetic circuit designers in finding an appropriate set
of parameters to achieve the desired timings of a genetic circuit. D-VASim
could actually help reduce the time consuming in-vitro experiments (laboratory
experiments) to analyze and design genetic circuits with desired behavior and
timings. We anticipate that the ability of analyzing the timings of genetic cir-
cuit may open up a new research area, which may help biologists and scientists
to design and characterize the timing properties of genetic circuits. Depending
on the complexity of a genetic circuit and the user-defined settings for these
analyses, D-VASim may take up to an hour to estimate the threshold value and
propagation delays. This estimation time is still reasonable as compared to the



56 Genetic Circuits Timing Analysis

number of days of laboratory experimentation, which are required only for a
single combination of inputs with a specific set of parameters.

This methodology of threshold value and propagation delay analyses is used in
the next chapter to perform the experimentation and logic analysis on some of
the real genetic circuit models [14].



Chapter 5
Genetic Circuits
Logic Analysis

After obtaining the threshold value and propagation delay of a genetic circuit
through the procedure defined in Chapter 4, a user can begin experimenting on
the genetic circuit model and apply all the possible input combinations. Once all
the possible input combinations of a genetic circuit are applied, the experimental
data (stochastic simulation data) can then be used to obtain (or validate) the
logical behavior of a genetic circuit model.

In this chapter, the logic analysis and validation algorithm is presented, which
extracts the logic behavior from the simulations and provide a fitness value that
can be used to infer how likely it is that the circuit will actually work after
implementation in the laboratory. The presented algorithm is scalable and able
to analyze n-input genetic logic circuits. The logic analysis of genetic circuits is
useful in two ways – first, it allows the user to verify more complex genetic logic
circuits, build by cascading several genetic logic gates; secondly, it helps the user
to extract the Boolean logic of a circuit even when the user does not have any
prior knowledge about its expected behavior. Similar to timing analyzer plug-
in, the proposed methodology for logic analysis has also been implemented as a
plug-in tool in D-VASim. This approach has been tested on 15 different genetic
circuit models, with different level of complexity, obtained from [21] and [14].

Some part of the work presented in this chapter has been published in the
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following peer-reviewed conference and workshop:

[62] Hasan Baig and Jan Madsen, "Logic Analysis and Verification of n-input
Genetic Logic Circuits", Design Automation and Test in Europe (DATE), pp.
654–657, 2017.

[58] Hasan Baig and Jan Madsen, "Logic and Timing Analysis of Genetic Logic
Circuits using D-VASim", 8th International Workshop on Bio Design Automa-
tion (IWBDA), pp. 77–78, 2016.

5.1 Methodology

As discussed in Chapter 4, threshold value and propagation delay of I/O species
are two important parameters required to obtain a correct Boolean expression
of a genetic circuit. Definition 4.1 states that the threshold value defines a
significant amount of concentration, which categorizes the analog concentrations
into digital logics 0 and 1. Also, definition 4.2 specifies that the propagation delay
is the time required to reflect the changes in input species concentrations on the
concentration of output species.

During the experimentation, if the input species concentrations are applied be-
low their threshold levels and each of the input combination is changed before
the propagation delay has elapsed, then the circuit never produces a correct
output for some of the input combinations. In this work, the timing analysis
plug-in of D-VASim [39] is used to obtain the threshold value and the propaga-
tion delay of a circuit. These results are then used to perform experiments on
genetic circuit models and log all experimental simulation data. The simulation
data is then given to the proposed algorithm to extract the logical behavior of
a circuit.

5.1.1 Overview

Algorithm 5.1 shows the pseudo code of the main procedure of the logic anal-
ysis and verification algorithm, which contains three sub-procedures; CaseAna-
lyzer, VariationAnalyzer and ConsBoolExpr, discussed separately in the Algo-
rithms 5.2, 5.3 and 5.4, respectively. Some initial parameters (N, SDAn, ThV AL,
FOVUD, IS , and OS) are required to execute the algorithm; where N corresponds
to the total number of input species, SDAn refers to the simulation data of all
I/O species, ThV AL denotes the upper threshold value of I/O species, FOVUD
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Algorithm 5.1: The main procedure of logic analysis and verification
algorithm.
1 begin
2 INITIALIZE (N, IS , OS , SDAn, ThV AL, FOVUD);
3 SDsize = Calculate the size of analog simulation data, SDAn

4 SDDig = ADC (N, SDAn, SDsize, ThV AL)
// SDDig = digital simulation data

5 (nc, Case_O, Case_I ) = CaseAnalyzer (N, SDsize, SDDig)
// Case_O = Array holds the output values for each input

combination
// Case_I = Array holds the number of occurrences of each

input combination
// nc = total number of possible input cases (or

combinations): 2N

6 (O_Var, HIGH_O) = VariationAnalyzer (nc, SDDig, Case_O)
// O_Var = Array to monitor variations in the output for

each case, nc
// High_O = Array to hold the number of times the output

is high for each case, nc
7 (BoolExpres, PFoBE ) = ConsBoolExpr (O_Var, Case_I,

HIGH_O, nc, N, FOVUD)
// BoolExpres = Contains the estimated Boolean expression
// PFoBE = Specifies the percentage fitness of estimated

Boolean expression in the simulation data
8 end

is the user-defined percentage of acceptable variation in the output data (de-
scribed later), and IS and OS specify the names of input and output species,
respectively. By giving users an ability to select the input and output species,
they can perform Boolean logic analysis on the entire circuit as well as on the
intermediate circuit components.

In the simulation of electronic circuits, a logical abstraction is typically applied
in which it is only considered if the wire is in high or low state, instead of tracking
the exact voltage value. In order to utilize a similar abstraction level here, the
algorithm first converts the analog simulation data into digital data with the
help of upper threshold values extracted from the timing analyzer plug-in of
D-VASim (see Chapter 4). This step is shown as the sub-procedure ADC at
line 4 in Algorithm 5.1. The algorithm scans the chosen N input and an output
species and converts their analog values in to digital values, based on the upper
threshold value provided. Once the analog data is converted to logic high and
low, the exact concentration of proteins are no longer needed in order to obtain
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the Boolean logic of a genetic circuit.

5.1.2 Input combinations analysis

The response time of a genetic circuit is important in order to obtain the cor-
rect behavior. Therefore, each input combination has to be applied for suffi-
cient amount of time to observe its correct response on the output species. In
electronic circuits, the signals propagate in separate wires and applied voltage
remains constant. However, the signals in genetic circuits are molecules drifting
in the same volume of a cell and easily merge with the concentrations of other
compounds. Due to this, the concentrations of a species in a genetic circuit
always varies, and may go up or down below the threshold level at any instant
of time. Because of this unstable behavior, for each input combination, it is
required to obtain continuous binary streams of output species to extract the
correct behavior of a genetic circuit.

Algorithm 5.2: Pseudo code of the procedure CaseAnalyzer.
input : N, SDsize, SDDig

output: nc, Case_O, Case_I
1 begin
2 nc = 2N ;
3 Set Array Case_I[nc] = 0;
4 Set Array Case_O[nc][SDsize] = 0;
5 Set icv ; // to read Input Case Values
6 for allj ∈ SDDig do
7 icv = At jth value, read the value of corresponding inputs’

combination;
8 Case_I [icv ] = Case_I [icv ] + 1;
9 if (jth value of SDDig output-specie for input case icv == 1) then

10 Set Case_O [icv ][j ]) = 1;
// Note that the Output is High for specific case

icv at simulation instant j
11 else
12 Set Case_O [icv ][j ]) = 0;

// Note that the Output is Low for specific case icv
at simulation instant j

13 end
14 end
15 end

The next sub-procedure, CaseAnalyzer, shown in Algorithm 5.2 analyzes the
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Figure 5.1: Logic analysis and verification process. (a) Sample plots of 2-input
genetic AND gate. (b) Sample data for illustrating the input case
and variation analysis.

number of times each input combination occurs (line 8) and logs their corre-
sponding output binary data streams (line 9-12). In order to understand this
procedure, consider the sample simulation plots in Figure 5.1(a), which are
produced from the 2-input genetic AND gate of Figure 3.5. CaseAnalyzer, pro-
cesses the data and generates output as depicted in the first three columns in
Figure 5.1(b). This data express, for each input combination, the number of
simulated data points as well as the output digital data stream of logic-0 and
1 converted according to the upper threshold levels. In this example, the case
of input combination 00 appears about 1850 times in total. The small glitch
between 4650-6350 time units indicates the stochastic nature of the model. It
shows that the logic-0 of GFP may refer to a concentration which is less than its
threshold value but may not be sharply zero. Also, the output of some genetic
circuit models is initially high which gradually reduces down to zero, as shown
in Figure 5.1(a). These unwanted high peaks should be filtered out to obtain
the correct Boolean expression.

For each input combination, the corresponding data stream of the output species
is also extracted, as shown in the third column of the table shown in Figure
5.1(b). In this example, the output data stream contains binary 1’s for two
input combinations – 00 and 11 . In this case, it is already known that the
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output of a circuit is initially high, when both of the inputs are low, and settle
down to zero gradually. Furthermore, Figure 5.1(a) depicts a short period of
time in which the output oscillates around the upper threshold value (between
6350-9400 time units), before entering into a stable logic-1 state. This happens
when both inputs are triggered high (i.e. 11). In order to examine such scenarios,
the digital output data streams, corresponding to each input combination, are
analyzed for stability through the sub-procedure, VariationAnalyzer, (line 6 in
Algorithm 5.1).

5.1.3 Variation analysis and Boolean expression construc-
tion

The pseudo code of the sub-procedure VariationAnalzyer is shown in Algorithm
5.3. VariationAnalzyer examines the output data stream (lines 8-27) and counts
how many times the output oscillates (or varies) between logic-1 and 0. It first
calculates the number of times a logic-1 appears for a specific input combination
(line 19). In the example shown in Figure 5.1(b), the logic-1 appears for 3
and 1875 times for the input combinations 00 and 11, respectively. It then
analyses for each of these input combinations changing 0-to-1 and 1-to-0 (i.e.
how many times the output varies). In Figure 5.1(b) this happens twice for
input combination 00 and 7 times for 11. Since the output is high when both
the inputs are the same, one may end up estimating the logical behavior of this
circuit to be an XNOR gate if the simulation data is not filtered out correctly.

In order to obtain the correct Boolean expression, two filtrations of the data are
performed by the sub-procedure, ConstBoolExpr (line 7 in Algorithm 5.1). The
first one is the calculation of fraction of variation according to equation 5.1;

FOVEsti =
O_V ar[i]

Case_I[i]
(5.1)

where:

i = Input combination at which the output is high at least once.
O_V ar[i] = Number of variations in the output, for i.
Case_I[i] = Number of times the input combination i occurs in the

simulation data.

Note that the value of Case_I[i] is always equivalent to the length of its corre-
sponding output data stream. In other words, if any input combination occurs
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four times, then the length of its corresponding output stream is four, because
the output also appears four times.

Algorithm 5.3: Pseudo code of the procedure VariationAnalyzer.
input : nc, Case_O
output: O_Var, HIGH_O

1 begin
2 Set Prev_OP_State = 0; // Previous digital state of output specie
3 Set Curr_OP_State = 0; // Current digital state of output specie
4 Set O_Var [nc] = 0;
5 Set HIGH_O [nc] = 0;

// loop through all input cases nc
6 for all i ∈ nc do

// loop through digital data of output species
7 for all j ∈ Case_O do
8 if (jth value of Case_O for input case i == 0) then
9 if (Prev_OP_State == 1) then

10 Increase O_Var [i ] (i.e. for ith input case) by 1;
11 Set Curr_OP_State = 0;
12 Set Prev_OP_State = Curr_OP_State;
13 else
14 Keep O_Var [i ] to its previous value;
15 Set Curr_OP_State = 0;
16 Set Prev_OP_State = Curr_OP_State;
17 end
18 else

// Count number of times the output is high for ith input
case

19 HIGH_O [i ] = HIGH_O [i ] + 1;
20 if (Prev_OP_State == 0) then
21 Increase O_Var by 1;
22 Set Curr_OP_State = 1;
23 Set Prev_OP_State = Curr_OP_State;
24 else
25 Keep O_Var [i ] to its previous value;
26 Set Curr_OP_State = 1;
27 Set Prev_OP_State = Curr_OP_State;
28 end
29 end
30 end
31 end
32 end
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In the example shown in Figure 5.1, the estimated fraction of variations –
FOVEST , for input combinations 00 and 11, are 2/1850 and 7/3050, respec-
tively. This indicates that only a small fraction of output, in comparison to
its whole size for specific input combination, is varied. This estimated fraction
of variation, FOVEST , is compared with the user-defined fraction of variation,
FOVUD, and the results are accepted if the estimated value is less than the
user-defined one. In the experimentation of this work, up to 25 percent varia-
tion (FOVUD = 0.25) is allowed in the output data streams.

However, this filter alone is not sufficient to obtain the correct Boolean logic
of a model. As in the case of the example shown in Figure 5.1, the algorithm
considers obtaining the output high for both input combinations 00 and 11,
based on the estimated value of FOVEST , and end up obtaining the XNOR
logic for this circuit model. Therefore, in order to handle this situation, another
filter is applied according to equation 5.2, which checks if the number of 1s’ in
the output binary data stream, for the specific input combination, are greater
than half the size of the whole output data stream.

HIGH_O[i] =
Case_I[i]

2
(5.2)

where:

i = Input combination at which the output stream is being
checked.

HIGH_O[i] = Number of 1’s in the output stream corresponding to the
input combination i.

Case_I[i] = Number of times the input combination i occurs in the
simulation data. This is equivalent to the length of
corresponding output data stream.

For the example shown in Figure 5.1, this condition holds false for the input
combination 00 (3 ≯ 1850/2), but turns true for the input combination 11 (1875
>3050/2). This filter also helps in making sure that the output, for a specific
input combination, is certain – either high or low. Nevertheless, this filtration
technique may also produce wrong results if not applied together with the first
technique mentioned above. In order to understand this, consider the example
case shown in Figure 5.2, where the output binary data streams of two different
input combinations, 00 and 11, are shown. The number of 1s in the output
stream, for both the cases, is same; however, the patterns are different. That is,
the output, for the input combination 00, remains high for the same number of
times it is high for the input combination 11, but the output is highly oscillatory



5.1 Methodology 65

Figure 5.2: Effectiveness of filtration process using both filters. An example
showing how both filters are useful, when applied together, in
obtaining the correct Boolean expression.

in the former case. The algorithm therefore discards (in this case if FOVUD ≤
0.5) this unstable output and do not consider it while constructing the Boolean
expression.

The pseudo code of this sub-procedure is shown in Algorithm 5.4. In order to fil-
ter out the results, both of the above mentioned conditions should be true. That
is, the filtration is performed, if the estimated fraction of variation, FOVEST ,
is less than the user-defined value (FOVUD); and if the number of times the
output is high for input case i is greater than half of the occurrence of input
case i throughout the simulation, as shown in line 12 of Algorithm 5.4. For each
filtered results, the Boolean expression is constructed through the pseudo code
shown in the lines 13-26.

In the end, algorithm estimates the percentage fitness of estimated Boolean
expression (PFoBE), in the simulation data, according to equation 5.3.

PFoBE = 100 −
∑

i FOVESTi

nc
× 100 (5.3)

where:

i = Input combination at which the filtered output stream is high.
FOVESTi = Estimated fraction of variation in the output data stream for

ith input combination.
nc = Total number of input combinations.
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Algorithm 5.4: Pseudo code of the procedure ConsBoolExp.
input : O_Var, Case_I, HIGH_O, nc, N, FOVUD, Case_O
output: BoolExpres, PFoBE

1 begin
2 Set TV = 0; // Total variation for all input cases, nc
3 Set FOVEST = 0; // FOVEST = Estimated fraction of variation
4 Set Bin[N ] = 0;

// holds N-bit binary value of input case, nc
5 Set Inter_Expr = null ;
6 Set Curr_Expr = null ;
7 Set BoolExpres = null ;
8 Set PFoBE = 0;

// loop through all input cases nc
9 for all i ∈ nc do

10 if (HIGH_O[i] ≥ 1) then
// Estimating fraction of variation.

11 FOVEST = O_Var[i]/Case_I[i];
12 if ((FOVEST < FOVUD) AND (High[i] > Case_I[i]/2)) then
13 Bin[N ] = id;

// loop through all input bits
14 for all j ∈ N do
15 if (jth bit of Bin == 0) then

// put a bar (’) with the name of jth input
16 Curr_Expr = Inj ’;
17 else

// directly extract the name of jth input
18 Curr_Expr = Inj ;
19 end
20 Inter_Expr = Inter_Expr · Curr_Expr;
21 end
22 else
23 Inter_Expr = null;
24 end
25 BoolExpres = BoolExpres + Inter_Expr;
26 Set Inter_Expr = null;
27 end
28 TV = FOVEST + TV;
29 end
30 PFoBE = 100 - (TV/nc × 100)
31 end
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5.2 Experimentation by Simulation

The proposed algorithm for logic analysis is tested on the SBML models of
15 genetic circuits. This set of 15 circuits includes 1, 2 and 3-inputs genetic
logic circuits, which are composed of 1 to 7 genetic logic gates containing 3-
26 genetic components. The five genetic circuit models are obtained from [21]
and the remaining 10 are the models of real genetic circuits acquired from [14].
There are a total 60 circuits published in [14], which were first designed on a
tool, named Cello [14], with the help of a hardware description language for
living cells. They were then fabricated and tested in a laboratory. Out of these
60 circuits, 45 of them worked correctly in the lab. Out of 45 working circuits,
10 of them are chosen randomly (with different level of complexity) for the
experimentation in this work.

5.2.1 Analysis of the SBOL-SBML converted genetic cir-
cuit models

As stated in Chapter 4 (in Section 4.2.6), that Cello generates the SBOL files.
Therefore, the SBOL files of the 10 circuits are first converted into SBML mod-
els using [61]. While analyzing the SBOL/SBML models of the circuits in
iBioSim [17], it was noticed that the inputs B and C of all circuits are swapped
in comparison to their original circuit diagrams shown in [14]. For example,
consider Figure 5.3 in which the original circuit schematic, the SBOLv diagram,
truth table, and the converted SBML model of the genetic circuit 0x0B, ob-
tained from [14], are shown in Figure 5.3 (a), (b), (c) and (d), respectively.
In Figure 5.3(a) and (b), the inputs A, B, and C, corresponds to PTac, PTet

and PBad in Figure 5.3(c) and (d), respectively. In Figure 5.3(b), the solid
black distributions are experimental data; and blue and red line distributions
are computational predictions from Cello [14], which describes the logic states
1 and 0, respectively. The logic states, for example + / + / –, indicates that
the inputs C, B and A (in order) are in logic 1 / 1 / 0 states, respectively.

As mentioned before in the Section 4.2.6 that the SBOL file generated by Cello
does not include the input sensor block for the circuit (which includes the input
inducers); thus these inducers are also not included during the SBOL-SBML
conversion process. Hence, the input inducers are manually added in the SBML
model using iBioSim, as shown in Figure 5.3(d) with the red-dotted block. The
rest of the model (shown as blue-dotted block) is the result of the SBOL-SBML
conversion process [61]. The external inputs, in all these ten circuits, are the
inducers IPTG, aTc and Arabinose, which control the activities of the promoters
PTac, PTet and PBad, respectively, as shown in Figure 5.3(d).
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Figure 5.3: Genetic circuit 0x0B [14]. (a) Circuit schematic (b) Truth table
and (c) SBOLv diagram [Image courtesy of [14]]. (d) Screen-shot
of the auto-generated SBML model in [17] using SBOL-SBML
converter [61].

It is also important to mention that, in [14], a circuit is generated by a random
search of compatible genetic gates using the simulated annealing algorithm [56].
Since the circuit is created using the non-deterministic search, the solution may
be different every time the process is executed. This is why the genetic compo-
nents shown in Figure 5.3(c) are different from those depicted in Figure 5.3(d).
Despite of having different genetic components, the circuit structure should not
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be changed in order to achieve the same functionality of each circuit. In Figure
5.3(a), the input A (or PTac) is connected to a NOT gate that produces the
PhlF protein, which in turn suppresses the output promoter PPhlF , as shown in
Figure 5.3(c). The input B (or PTet) is connected directly to one of the inputs
of the NOR gate (producing HlYllR protein), as depicted in Figure 5.3(a) and
(c). Another input of this NOR gate is the output promoter of the first NOT
gate (i.e. PPhlF ), which together with the input B (or PTet) generates the pro-
tein HlYllR and suppresses the output promoter, PHlY llR, as shown in Figure
5.3(c). Similarly, the input C (or PBad) in Figure 5.3(a) is connected to a sepa-
rate NOT gate (producing SrpR protein) which suppresses the output promoter
PSrpR. The promoter PSrpR together with the output promoter PHlY llR of the
first NOR gate (producing HlYllR protein) performs the NOR logic to produce
the protein BM3R1, which in turn produces the final output, yellow fluroescent
protein (YFP).

In Figure 5.3(d), the NOT gate of input A is producing the protein A1_AmtR,
as opposed to what it is shown to produce (PhlF protein) in Figure 5.3(a) and
(c). This is because of the non-deterministic gates assignment in Cello, which
may have different output proteins, but the functionality (the NOT logic in
this case) remains same. The generated protein, A1_AmtR, suppresses the
promoter, PAmtR, thus exhibiting the NOT logic. However, it can be noticed,
in Figure 5.3(d), that instead of input B (or PTet), the input C (or PBad) is
directly connected to one of the inputs of the NOR gate (producing HlYllR
protein) along with the promoter PAmtR. The input B (or PTet) in Figure
5.3(d), which should be connected directly to a NOR gate, seems to be routed
to a NOT gate (producing SrpR protein). In other words, the inputs B and
C of the original circuit 0x0B are swapped. Due to this problem of swapped
B and C inputs, the functionality of any genetic circuit shown in [14] would
be changed. For example, the optimized Boolean expression of the original

circuit 0x0B is (C +A+B), in which there is a NOT gate with input C and an
intermediate NOR gate with inputs A and B. If the inputs B and C are swapped

then the expression will become (B +A+ C), having NOT gate with input B
and an intermediate NOR gate with inputs A and C, which clearly changes the
functionality of the circuit.

The same behavior, that is the swapping of inputs B and C, has been observed
in all ten circuits obtained from [14]. It has also been observed that the internal
structure of some of the circuits are changed in the auto-converted SBML files
(See Appendix C.2). We verified that the problem is neither in [61] nor in [17],
so we assume that the diagrams shown in [14] are structurally correct and the
problem might be in the SBOL file generation in the Cello tool [14].
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5.2.2 Logic analysis and verification

The SBML files generated for ten circuits [14] (with inputs B and C swapped)
and for five other circuits [21] are used in D-VASim to perform the experimen-
tation followed by the logic verification. The external inputs in the circuits
obtained from [14] are IPTG, aTc and Arabinose, which were varied in the
experimentation to observe their logical behaviours. In these experiments, all
fifteen circuit are run for 10,000 simulation time units. Also, a value of 1000
time units is assumed to be a propagation delay for all circuits, which means
that during simulation, each input combination is applied for at least 1000 time
units. Furthermore, the upper and lower threshold value equals to 15 and 0
molecules, respectively, are used for all fifteen circuits.

Figure 5.4: Interactive simulation traces of 0x0B, with its corresponding dig-
ital waveforms, for logic analysis.

The screen-shot of the interactive experimentation of genetic circuit, 0x0B, is
shown in Figure 5.4. The upper half of this figure indicates the interactive analog
simulation results in which the concentration of external inputs, IPTG, aTc and
Arabinose is varied to observe the behavior of the output protein, YFP. It is
evident from this figure that it is not easy to grasp the logic of a genetic circuit
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model with these messy analog waveforms. On the other hand, the Boolean
logic is a bit easier to analyze in the corresponding digital waveforms shown in
Figure 5.4. The logic verification algorithm made this analyses further easier by
automatically analyzing the whole simulation data (shown in Figure 5.4) and
indicating the results in the form of a raw Boolean expression as shown in Figure
5.5.

Figure 5.5: Logic analysis results of the genetic circuit 0x0B in D-VASim.

The percentage fitness of the Boolean expression in the simulation data is also
shown in Figure 5.5. The logic verification algorithm expresses the logical be-
havior in the Sum of Products (SoP) form of Boolean expression (See Chapter 6
for more details). The original Boolean expression of the circuit 0x0B, obtained
from the truth table shown in Figure 5.3(b), is A.B.C +A.B.C +A.B.C. How-
ever, the Boolean expression for the same circuit, obtained in these experimen-
tation, is shown in Figure 5.5, which is equivalent to A.B.C +A.B.C +A.B.C;
where inputs A, B and C corresponds to IPTG, aTc, and Arabinose, respec-
tively. This is because the inputs B and C were swapped in the SBML model
(see Section 5.2.1). This indicates that the proposed logic analysis algorithm
estimates the correct logic of the SBML model being tested, provided that the
experimentation is performed with the correct propagation delay and threshold
values.

The simulation data and logic analyses of the circuits, 0x0B, are shown in Figure
5.6. The results shown in Figure 5.6 are used to obtain the logical behavior of
the circuit 0x0B. In Figure 5.6, Case_I indicates the number of times each input
combination occurs during the total 10,000 time units of simulation. It further
includes the number of times the output of a circuit remains high, High_O,
for that particular input combination along with the number of variations in
the output data, O_Var. Also, the input combinations, at which the circuit’s
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Figure 5.6: Analytical simulation data of the genetic circuit model 0x0B [14].

output is expected to be high, are highlighted in green color along the x-axis.

In Figure 5.6, the output variation of circuit 0x0B is not too high. For exam-
ple, the output state appears to be logic-1 for the input combination 100 and
seems quite stable having very low variation value of 2. The reason why the
input combination 100 has so many logic-1 output states is due to the fact that
the output is high for the previous input combination 011. When the input
combination is changed from 011 to 100, the output starts to decay gradually,
and remains high until it passes by the threshold level. This input combination
should, therefore, be included in the Boolean expression, but however filtered
out using equation 5.2, because for 3587 times of the input combination 100
occurs during the entire simulation, the corresponding output remains high for
1191 times (< 3587/2).

It is therefore obvious that similar to electronic circuits, where the output state
may be incorrect if the inputs are changed before the propagation delay has
elapsed, the correct behavior of a genetic circuit can only be obtained when
each possible input combination is applied for sufficient amount of time. The
experimental results of the remaining 14 circuits are given in Appendix C, which
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shows that the algorithm successfully obtained the correct boolean expressions
for all these circuits. It has been clearly observed that not only the inputs B
and C are swapped in all of the circuits obtained from [14] but also the circuit
topology in the converted SBML models of the circuits 0x04, 0x4D, and 0x1C
are different than those originally shown in [14]. However, these structural
changes in the circuits do not affect the functionality of these circuits except
that, similar to other circuits, the inputs B and C are interchanged.

5.2.3 Effects of varying threshold value on the behavior of
genetic circuit

The behavior of genetic circuits is also analyzed by varying the threshold value
of input concentrations to very low (3 molecules) and very high (40 molecules),
and observed that the same circuits behave differently.

Figure 5.7: Analytical data of circuit 0x0B for threshold values 3 and 40.
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Figure 5.7 shows the comparison of simulation data for the circuit 0x0B for the
above mentioned two threshold values. In this figure, it can be noticed that
the output response of 0x0B circuit, for upper threshold value of 3 molecules,
is entirely different and it behaves like a 3-input AND gate. This is because
the applied input concentration is too weak to trigger the output concentration;
but when applied together i.e., 111, the output is triggered high to satisfy the
applied filters. On the other hand, 0x0B circuit has two wrong states (shown
in the Boolean expression in Figure 5.7) when 40 molecules are applied as an
input concentration. For this case of threshold value, the output response also
seems to oscillate between logic-high and low for large number of times (Figure
5.7) as compared to when its threshold value is set to 15 (Figure 5.6). This
is because the concentration levels of input and output species are not clearly
distinguishable when the applied input concentration is high.

5.2.4 Performance analysis

The performances of the proposed algorithm, on all fifteen circuits, are also
analyzed, as shown in Figure 5.8. Depending upon the complexity of a circuit,
each circuit may have different amount of data for specified simulation time.

For example, there is only one gate, composed of three genetic components,
in genetic NOT gate circuit. For this small circuit, only 3.5 × 103 reactions
occurred during 10,000 simulation time units. In contrast, a bigger genetic
circuit (x1C) containing 7 cascaded gates, composed of 26 genetic components,
had 43.1× 103 reactions executed during the same simulation time. Therefore,
the size of simulation data for NOT gate circuit is much smaller than the size
of x1C circuit.

Due to this, the time to estimate the logic of a circuit is much lower for a NOT
gate circuit as compared to the time required to estimate the logical behavior of
the x1C circuit. This is shown as Data points in Figure 5.8, which corresponds to
the number of reactions executed during 10,000 simulation time units. Similarly,
the difference of analysis time for the circuits having same number of gates
reflects the difference in the number of genetic components, and thus in the
number of Data points.
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Figure 5.8: Performance evaluation of the proposed algorithm over 15 circuits.
First five circuits are from [21] and the remaining ten circuits are
from [14].

5.3 Discussion

In this chapter, a methodology to analyze and verify the intended behavior of
a genetic logic circuit is presented. It is shown through simulation experiments
that the circuit may not behave as intended if the circuit parameter(s), like
threshold value, are varied. This may help users to analyze the circuit’s be-
havior and robustness for different parameter sets before creating them in the
laboratory. Furthermore, the performance of the proposed algorithm is analyzed
over the number of genetic circuit models, and observed that it takes about 8.4
seconds to analyze the logic of a complex genetic circuit with significantly large-
sized data. As the experimentation in the laboratory requires a couple of hours
to analyze even a single output state [14], the proposed simulation-based ap-
proach is likely to be useful for genetic circuit designers to analyze the intended
logic of genetic circuits prior to their implementation and testing in the labo-
ratory. The proposed algorithm is scalable and can be used to analyze genetic
circuit with any number of inputs. However, when the circuit inputs are in-
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creased, the size of simulation data will also be increased, which results in the
rise of logic estimation time. However, in comparison to electronic circuits, the
genetic circuits are much more complex and difficult to construct due to their
stochastic nature. This fact suggests that the size of genetic circuits may not
grow with a same pace as the size and complexity of electronic circuits were in-
creased, and thus the proposed method can be used effectively for genetic logic
analysis.



Chapter 6

GeneTech –
A Technology Mapping

Tool for Genetic Circuits

In contrast to electronic logic gates, which have the same physical quantity
i.e., voltage, at the input and output, the genetic logic gates have different
quantities acting as an input and output. This makes it very challenging to
integrate genetic logic gates to construct complex genetic circuits because the
triggering molecules relating input and output, between cascaded gates, has to
be compatible and unique.

In this chapter, a new standalone tool, GeneTech (extracted from Genetic
Technology mapping) is discussed, which automate the process of generating
genetic circuits for dedicated Boolean functions. GeneTech performs Boolean
optimization, followed by synthesis and technology mapping using a library of
genetic logic gates. The genetic logic gates library used in this work has been
developed and tested in the laboratory by MIT and Boston University [14].
GeneTech takes the Boolean expression of a genetic circuit as input, and then
first optimize it. Afterwards, it synthesizes the optimized Boolean expression
into NOR-NOT form in order to construct the circuit using the real NOR/NOT
gates available in the genetic gates library [14]. In the end, GeneTech performs
technology mapping to generate all the feasible circuits, with different genetic
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gates, to achieve the desired logical behavior.

The work presented in this chapter has been disseminated in a workshop and
the full manuscript has been submitted in journal, as mentioned below.

[51] Hasan Baig and Jan Madsen, "A Top-down Approach to Genetic Circuit
Synthesis and Optimized Technology Mapping", 9th International Workshop on
Bio-Design Automation (IWBDA), pp. 28–29, 2017. Published.

[63] Hasan Baig and Jan Madsen, "GeneTech: "A Technology Mapping Tool for
Genetic Logic Circuits", IEEE Transactions on Biomedical Engineering. Under
review.

6.1 Motivation

This work is originally inspired from the processes of optimization and tech-
nology mapping of electronic circuits in the EDA industry. In EDA for digital
electronics, the combinatorial circuit optimization is always required to imple-
ment the circuit with the minimum number of logic gates [64]. This area-efficient
implementation of digital circuits not only helps reducing the size of electronic
devices but also avoid wasting power and redundant resources.

In order to get the insight of logic optimization, consider the digital circuit for
the expression – ab+b+ac, in Figure 6.1(a). This figure shows that the original
circuit contains four logic gates. After running the optimization algorithm, the
number of gates in the circuit reduces down to two while preserving the actual
functionality, as illustrated in Figure 6.1(b).

Figure 6.1: Digital circuit of the expression ab + b + ac. (a) Original circuit
containing four gates. (b) Optimized circuit having two gates.

The 2-input genetic NAND gate is termed universal in [21] because it is possible
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to construct other combinational gates by cascading the collection of them. For
instance, genetic inverter and a 2-input genetic NAND gate can be used to
construct a genetic XOR gate. Suppose L and T represent the two genetic
inputs, LacI and TetR, then the function of a genetic XOR gate can be described
by

L⊕ T = LT + LT (6.1)

The standard schematic of a XOR gate is shown in Figure 6.2. It consists of
AND, OR and NOT gates. The direct genetic implementation of AND and OR
gates are not shown in [21]. However, as mentioned above, these gates can be
constructed with the help of universal 2-input genetic NAND gates and genetic
inverters [21].

Figure 6.2: Standard schematic of the XOR gate.

The equivalent circuit of a XOR gate constructed with the available genetic
components is shown in Figure 6.3(a). This schematic of a genetic XOR gate
needs to be optimized with the following two constraints — the functionality of
a circuit should remain same, and the components of the optimized circuit must
be available in the library of genetic gates. It can be noticed that the back-to-
back inverters are present in Figure 6.3(a) resulting in the following equivalent
Boolean expression.

L⊕ T = LT + LT (6.2)

One of the methods to estimate the cost of a circuit is to calculate the number of
inputs to each gate – hence the cost is higher if the number of gates is increased.
For the circuit shown in Figure 6.3(a), the cost of three NAND gates is 6 and six
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Figure 6.3: Schematic of the genetic XOR gate (a) constructed with 2-input
NAND gates. (b) The optimized circuit.

NOT gates is also 6, so the total cost is 12, which can be reduced down to 8 as
shown in Figure 6.3(b). This optimization seems straight forward and accept-
able as it fulfills the above mentioned constraints and is composed of inverters
and 2-input NAND gates, which are available in the genetic-gates library [21].
However, the optimization and technology mapping of genetic circuits is not
similar to electronic circuits. This is because the input and output quantities of
electronic circuits are the same i.e. voltage, and therefore the electronic gates
can easily be cascaded together. On the contrary, the input and output quan-
tities of genetic gates are different, and therefore the signal matching has to be
considered while mapping genetic gates on the circuit.

Similar to the digital electronic circuits, we want to avoid having redundant
logic in genetic circuits. Therefore, the logic expression, either for digital or
genetic circuits, needs to be minimized using any optimization technique.
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6.2 Methodology

A digital circuit or Boolean logic can be expressed either in the minterm or
maxterm canonical form. Minterms are called products because they are the
logical AND of a set of variables/literals and maxterms are termed as sums
because they are the logical OR of a set of variables/literals. Therefore, the
Boolean expression can either be expressed as sum of minterms/products (SOP)
or product of maxterms/sums (POS). In the example shown in equation 6.3, the
left-hand side represents the SOP form and the right-hand side represents its
equivalent POS form.

ab + b + ac = (a + b + c)(a + b + c)(a + b + c) (6.3)

Figure 6.4: The technology mapping flow of GeneTech.

GeneTech is able to process the Boolean expressions available in SOP form.
The design flow of GeneTech is shown in Figure 6.4. It takes the SOP Boolean
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expression and first optimizes it followed by the synthesis and technology map-
ping. Each of the highlighted steps shown in Figure 6.4 are described separately
in the following subsections.

6.2.1 Logic optimization

The digital logic minimization using meta-heuristics is a classical optimization
problem and has already been addressed before [65]. As demonstrated above,
the minimization of genetic logic circuits follows the same procedure as that
of digital circuits. Therefore, meta-heuristics can also be employed to optimize
genetic logic circuits. The algorithm used in GeneTech for Boolean expression
optimization is based on the simulated annealing algorithm [66]. In order to
apply simulated annealing to any optimization problem, one must define the
search space, the neighbor selection method, acceptance probability, and the
annealing schedule. The initial temperature, the rate at which the temperature
reduces, the number of iterations at each temperature and the stopping criterion
is known as the annealing schedule [65].

Suppose, B, be a search space, is a set of all possible Boolean expressions im-
plementing a Boolean function f : {0, 1}n → {0, 1}m . During each iteration,
the annealing algorithm considers some neighboring state expression, EN ∈ B
of the current state expression EC ∈ B , and decides probabilistically either to
move to state EN or remain in the state EC . The pseudo-code of annealing-
based algorithm for Boolean expression minimization is shown in the Algorithm
6.1. The objective function for the minimization of the Boolean expression is

Minimize
∑

L

where, L is the total number of literals in the expression.

That is, the objective is to minimize the cost of a Boolean expression in terms
of literals. This minimization is carried out by the help of Boolean replacement
rules listed in Table 6.1.

The algorithm starts by taking the inputs - Boolean expression, temperature
coefficient, initial temperature, and the time to execute algorithm. The pro-
cedure COST_CAL calculates the initial cost of the Boolean expression (line
2). The while loop runs until the end time, tE , lapsed (line 5). The procedure,
SEARCH-NEIGHBOUR (line 6), obtains the neighboring state expression, EN ,
by applying the Boolean replacement rules listed in Table 6.1.
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Algorithm 6.1: Pseudo code of logic optimization.
input : E0, TCOF , T0, tE
output: EB, CB

// E0 = Initial expression, TCOF = Temperature coefficient
// T0 = Initial temperature, tE = End time to finish algorithm,
// EB = Best expression, CB = Best cost

1 begin
2 C0 = COST_CAL(E0); // C0 = Initial cost
3 EC = E0; // EC = Current expression
4 TC = T0; // TC = Current temperature
5 while (tC < te) do

// tC = Current time
6 (EN , CP , CN ) = SEARCH-NEIGHBOUR (EC);

// EN = Neighbouring expression, CP = Previous cost, CN = New
cost

// * Calculate acceptance probability (AP) *
7 if (CN > CP ) then
8 AP = CALC(TC , CP , CN );
9 else

10 AP = 1;
11 end

// * Update new expression *
12 if (AP > random[0,1)) then
13 EC = EN ;
14 else
15 EC = EC ;
16 end
17 TC = TCOF × TC ;
18 end
19 EB = EC ;
20 CB = CN ;
21 end

The annealing algorithm calls the procedure, SEARCH-NEIGHBOUR, by pass-
ing the current state of expression as an input. It then randomly decides whether
to expand any of the min-term in the expression or proceeds without expanding
it. The re-expansion of already reduced min-terms is sometimes useful to avoid
getting stuck in local optimum value. The total number of min-terms in the
Boolean expression is then calculated and a combination of any two min-terms
is selected randomly for minimization. The number of literals in each min-term
is then evaluated. If both of the min-terms contain single literal only, they di-
rectly scan through the replacement rules followed by the construction of a new
expression. If the number of literals, in any of them, is greater than one, then
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Table 6.1: Boolean replacement rules.

Case Replacement
x + x

(x.1) or (1.x)
(x + 0) or (0 + x)

x

x’ + x’
(x’.1) or (1.x’)

(x’ + 0) or (0 + x’)
x’

(x + 1) or (1 + x)
(x’ + 1) or (1 + x’)
(x + x’) or (x’ + x)

1

(x.0) or (0.x)
(x.x’) or (x’.x) 0

x.y + x.z x.(y + z)

the algorithm performs a check if a common literal(s) is present in both of them.
If no match is found, the input expression is reconstructed. If a common literal
is found, the algorithm arranges the min-terms in the form

M(RL−1 + RL−2)

where:
M is the matched literal(s).
RL−1 corresponds to rest of the literals in the first min-term.
RL−2 corresponds to rest of the literals in the second min-term.

The procedure, SEARCH-NEIGHBOUR, then checks the nested elements (ele-
ments inside braces) of the reduced expression for further reduction, and passes
them through the Boolean replacement rules. The process then searches for the
nested min-terms containing braces and keep searching until all the nested min-
terms, containing braces, are passed through the Boolean replacement rules.
Finally, all the possible combinations, within nested expression, are checked for
common literals. Unlike the beginning of the algorithm, where the combination
of two min-terms is randomly chosen, all the combinations are checked one by
one at this stage. The new expression, EN , is then constructed and a new cost
of a reduced expression, CN , is calculated.

As an example, consider the same SOP form of the expression 6.3, which is
rewritten as expression 6.4 below

ab + b + ac (6.4)
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To minimize the expression 6.4, the algorithm randomly chooses the combination
of, say, first and third min-terms initially, i.e. ab and ac. As literal a is common
in both of them, the expression reduces down to the expression 6.5.

a(b + c) + b (6.5)

Since these two min-terms are selected randomly, it is possible that this combi-
nation may not produce the optimized result. Because of this uncertainty, the
capability of expanding the reduced min-terms is incorporated in the algorithm.
The reduction of expression (6.4) to (6.5) results in the reduction of cost from
5 to 4 literals with no further reduction possible. The circuit generated for this
expression, is shown in Figure 6.5., which is not the optimized one. With the
capability of expanding the reduced min-terms, the algorithm is able to come
out of this local optimized solution. Therefore, in the above example, if the ex-
pression (6.5) is expanded again into (6.4) and a combination of first and second
elements is chosen, i.e., ab and b, then the optimized cost of the expression (6.4)
would reduce from 5 literals to 3 literals, as shown below; and would result in
the circuit pictured in Figure 6.1(b).

b(a + 1) + acb + ac (6.6)

b + ac (6.7)

Figure 6.5: The local optimized circuit of an example expression 6.4.

Finally, the procedure CALC calculates the acceptance probability based on the
cost of Boolean expressions (lines 7-11). If the new cost, CN , is less than the
previous cost, CP , the new solution is assigned a probability equals to one and
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accepts the new expression as a current best solution. Otherwise, the acceptance
probability of new expression is calculated according to the following expression:

AP = e
−(CN − CP )

TC (6.8)

Then a random number between 0 and 1 (exclusive) is generated. The algorithm
accepts the new expression as a best solution if the acceptance probability, AP , is
greater than the generated random number. Else it is rejected and the previous
state of expression is considered as a current best solution (lines 12-16).

6.2.2 Logic synthesis

GeneTech is developed to be used for constructing real genetic circuits from the
genetic gates library tested in the laboratory [14]. The circuits experimented
in [14] are composed of genetic NOR and genetic NOT gates. Therefore, in
this stage of logic synthesis, the AND/NAND terms present in the optimized
Boolean expression are converted to NOT/NOR form by applying the following
DeMorgan’s Laws.

AB = A + B (6.9a)

AB = A + B (6.9b)

A.B = A + B (6.10)

The pseudo code of the logic synthesis algorithm is shown in the Algorithm 6.2.
The algorithm is briefly explained with the help of example shown in Figure
6.6, where the input expression is shown in red and the final output expression
is highlighted in green. The algorithm begins by taking the optimized Boolean
expression as an input and checking first if it contains any minterms with braces
(line 2 in Algorithm 6.2). All minterms inside each braced-minterm are first
passed through the procedure, ProcessANDTerms, to convert ANDed minterms
to NOR terms (lines 4, 5 in Algorithm 6.2). These steps are shown in Figure
6.6 in line 0 and 1. The algorithm then process OR terms, if the number of
minterms inside braces are greater than one (lines 6-9 in Algorithm 6.2). This is
shown in line 2 in Figure 6.6, where the OR terms are converted to NAND by the
procedure ProcessORTerms, using equation (6.9a). The same procedure, also
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expand braces by multiplying minterms and check if any Boolean replacement
rules (shown in Table 6.1) are applicable. This is shown in lines 3 and 4 in
Figure 6.6.

Algorithm 6.2: Pseudo code of logic synthesis.
input : Expin
output: Expout
// Expin = Input expression, Expout = Output Expression

1 begin
2 if (Expin contain braces terms) then
3 for (all braces terms in Expin) do
4 for (all minterms inside braces) do
5 MTIB = ProcessANDTerms;

// MTIB = Array holding minterms inside braces
6 if (MTIB > 1) then
7 OutputString = ProcessORTerms;
8 OutputString = ProcessNANDTerms;
9 OutputString = MintermsToExpression;

10 else
11 OutputString = MintermsToExpression;
12 end
13 end
14 end
15 else
16 for (all minterms in Expin) do
17 Minterms = ProcessANDTerms;
18 OutputString = MintermsToExpression;
19 end
20 end
21 for (all minterms in OutputString) do
22 ConvertToNOR;
23 end
24 Expout = OutputString;
25 end

After applying equation (6.9a) (in line 2 in Figure 6.6) to convert the expression
from OR to NAND, it is converted back again to NAND form only if the expres-
sion is manipulated by applying the Boolean replacement rules. This NAND to
OR conversion is shown in the lines 4-6 in Figure 6.6, using the procedure, Pro-
cessNANDTerms, (line 8 in Algorithm 6.2). Then all of the minterms arranged
in an array are converted to string expressions using the procedure,MintermsTo-
Expression (line 9 in Algorithm 6.2). If there are no minterms in the expression
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Figure 6.6: Example expression to illustrate how synthesis algorithm works.

which contain braces (e.g. a + bc), the algorithm then processes the ANDed
minterms in the expression (lines 16-19 in Algorithm 6.2). After processing all
minterms with or without braces, the algorithm then converts all minterms in
the expression to NOR (lines 21-22 in Algorithm 6.2). In the example shown
in Figure 6.6, there is only one minterm in the expression with braces, which
contain two sub minterms inside braces. In the last step, equation 6.10 converts
the ANDed minterms (with braces) to NOR, as shown in lines 7 and 8 of Figure
6.6.

6.2.3 Genetic technology mapping

When the Boolean expression is synthesized into NOR/NOT form, genetic tech-
nology mapping can be performed using the genetic gates library. We have ex-
tracted the genetic gates from [14] by analyzing the SBOLv diagrams of all the
circuits shown in [14] and arranged them in the separate lists of genetic NOT
and NOR gates. The list of genetic NOT and NOR gates is shown in Figure
6.7. The lists shown in this figure consists of 35 NOR and 17 NOT gates, which
indicates that there are several different genetic components which can be used
to perform the logical NOR or NOT operations inside a living cell.

Figure 6.8 shows the equivalent SBOLv diagrams [10] of the genetic NOT-1
(“1” refers to the identity of this gate shown in Figure 6.7) and NOR-1 gates.
For example, the input of a genetic NOT-1 gate, shown in Figure 6.8, is PTac

promoter which produces the protein AmtR based on the presence or absence
of isopropylethio-glactoside (IPTG) inducer. If IPTG is absent, the input pro-
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moter, PTac is active (logic-1) and produces the AmtR protein, which then
suppresses the activity of the output promoter PAmtR (logic-0), and vice versa.

Figure 6.7: Genetic gates library constructed from the circuits shown in [14].

Similarly, for the NOR-1 gate, shown in Figure 6.8, the activities of the input
promoters, PTac and PTet, are controlled by the inducers IPTG and anhydrote-
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trascycline (aTc), respectively. When both of them are present, the activities of
input promoters, PTac and PTet, are suppressed (logic-00), which reduces down
the production of protein SrpR. The output promoter, PSrpR, becomes active
(logic-1) when the protein SrpR is not produced in a significant amount to sup-
press it. When either or both of these inducers are absent, the corresponding
input promoter(s) becomes active (logic-01, 10, 11) and produces the protein,
SrpR, which in turn suppresses (logic-0) the activity of output promoter, PSrpR,
thus exhibiting the NOR logic.

Figure 6.8: SBOLv diagrams of NOT-1 and NOR-1 gates.

As discussed above, the input and output quantities in genetic gates are different.
This make it challenging to construct a genetic circuit by making sure that the
output of the first gate is compatible with the input of the following one. The
GeneTech mapping algorithm constructs a genetic circuit by using the genetic
gates, from the gates library (Figure 6.7), whose inputs and output proteins are
matched with each other.

The mapping algorithm is explained briefly with the help of example shown in
Figure 6.9. In this figure, the output expression from the previous stage, logic
synthesis, is considered to be an input to the algorithm for technology mapping.
Inputs a, b and c correspond to the external inputs, PTac, PTet, and PBad,
respectively in [14]. The algorithm works on the depth-first search approach
and hence begins by mapping genetic gates first on the deepest element(s) in the
expression. Therefore, the list of all the possible NOT gates for b are extracted
from the genetic gates library first.

For understanding, let us name the list of inverters for b as list-A, which consists
of NOT-5 and NOT-6 gates. The algorithm selects NOT-5 first from list-A, and
then checks if its output is compatible with the input a (or PTac) in the form
of NOR gate. At this step, a new list, say list-B, is created which contains
three NOR gates with PTac as one of their inputs. Since the output of NOT-5 is
compatible with the input of the NOR-9, the algorithm proceeds further with the



6.2 Methodology 91

Figure 6.9: Explanatory example of mapping algorithm.

search of NOR gate(s) with one input c (or PBad) and the other one compatible
with the output of NOR-9. Again, a new list, say list-C, is created containing
four NOR gates with PBad as one of their inputs. The second input of any of
these 4 gates (in list-C) do not match with the output of NOR-9 i.e. PBetl.
The algorithm then steps back and remove NOR-9 from list-B, and search for
any other NOR gate compatible with the output of NOT-5, PAmer. Since there
are no other NOR gates available in list-B which are compatible with PAmer,
the algorithm further steps back and remove NOT-5 from list-A. The algorithm
then selects NOT-6 and proceeds further by checking if its output, PAmtr, is
compatible with the available NOR gates in list-B. Both of the remaining NOR
gates in list-B (2 out of 3), NOR-10 and NOR-11, matches the output of the gate
NOT-6. The algorithm selects NOR-10 first and proceeds ahead by checking
the compatibility of its output, PHlyllR, with the NOR gates available in list-C.

At this stage, there are three matching NOR gates present in the list which can
be used to construct the final stage of circuit. This may result in three possi-
ble circuits constructed from the genetic gates in sequence of NOT-6→NOR-
10→NOR-21, NOT-6→NOR-10→NOR-22, and NOT-6→NOR-10→NOR-
23. There are no matching gates available in list-C with the output of second
stage NOR-11 from list-B. Therefore, to implement the desired logic, the total
number of circuits generated by the algorithm would be three.
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While constructing genetic circuits, the algorithm avoids using the components
which makes an unintended feedback loop with the preceding stage components.
For example, the circuit diagram of one of the above mentioned solutions, with
the components NOT-6→NOR-10→NOR-21, shown in Figure 6.10, has the
output of the final gate, NOR-21, being the same as one of the input of the
previous gate, NOR-10. In genetic circuits, signals are molecules and unlike
electronic circuits, they do not propagate in separate wires. Therefore, it is
impossible to prevent the AmtR protein generated by the NOR-21 gate from
suppressing both the output promoter PAmtR for NOR-21 and the input pro-
moter for NOR-10. Hence, the algorithm discards this circuit for achieving the
desired functionality, and hence the final number of possible circuits are two.

Figure 6.10: Circuit diagram of one possible solution, for the example expres-
sion shown in Figure 6.9, which creates an unintended feedback
loop.

The pseudo-code of the mapping algorithm is presented in Algorithm 6.3. The
procedure, SolveNestedEl, in line 3 recursively extracts all the possible gates
(from the genetics gates library) for each circuit element in the expression and
arrange them in separate lists. Any empty list indicates that the genetic gates
are not available in the library for the desired input combination. In the case of
empty list, the circuit cannot be generated and the algorithm stops executing.
Once the lists are generated for all circuit elements, the procedure GatesMatch-
ing search for the matching gates which can be cascaded together. This proce-
dure also filters out those components which forms an unintended feedback loop
with the preceding gates, as described above in Figure 6.10. Even if the list of
circuit elements is not empty, it may happen that the involved gates cannot be
cascaded together due to incompatible input and output. This screening is also
performed by the same procedure GatesMatching. Once all the matching gates
are found, the procedure, GenerateCircuits, cascade all the possible compati-
ble gates together to construct different possible circuits. The set of generated
circuits are meant to exhibit the same Boolean logic, with the combination of
different genetic components, and without causing cross-interference with each
other.
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Algorithm 6.3: Pseudo code of technology mapping.
input : Expin
output: Expout
// Expin = Input expression, Expout = Output Expression

1 begin
2 for (all NOR terms, ExpNor, in Expin) do
3 SolveNestedEl(ExpNor);
4 if (any LIST is not empty) then
5 GatesMatching; // perform gates matching
6 GenerateCircuits; // generate all possible circuits

7 else
8 Print"Gates not available in library;
9 end
1 Procedure SolveNestedEl(Expression)
2 if (ExpNor contains braces) then
3 for (all minterms, M, in ExpNor) do
4 if (M contains further braces) then
5 Exp = Extract expression inside braces;
6 SolveNestedEl(Exp);
7 else
8 Create the list, LIST, of all possible gates of M ;
9 end

10 end
11 else
12 for (all minterms, M, in ExpNor) do
13 Create the list, LIST, of all possible gates of M ;
14 end
15 end
16 end
17 end

GeneTech generates the circuit in a text string format which resembles the
structure of SBOLv. For instance, one of the possible circuits, for the exam-
ple shown in Figure 6.9, consists of NOT-6→NOR-10→NOR-23. GeneTech
structured this circuit in the form shown in Figure 6.11(a). The corresponding
SBOLv diagram and the gate-level circuit schematic of Figure 6.11(a) are shown
in Figure 6.11(b) and Figure 6.11(c), respectively. In Figure 6.11(a), promot-
ers are shown with the symbol “->”, the generated proteins are represented by
round braces “( )”, and the repression is indicated by the symbol “−−−|” or "T".
Figure 6.11(a) indicates that a PTet promoter generates a protein AmtR which
in turn represses the output promoter PAmtR. The promoter PAmtR together
with the promoter PTac generate the protein HlYllR, which represses the out-
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Figure 6.11: One possible solution for the expression shown in Figure 6.9. (a)
Circuit diagram developed by GeneTech. (b) Equivalent SBOLv
diagram. (c) Equivalent gate-level circuit schematic.

put promoter PHlY llR. The promoter PHlY llR together with the promoter PBad

generates a protein BM3R1, which represses the activity of the output promoter
PBM3R1. The promoter PBM3R1 is used to produce the output indicator, the
yellow fluorescent protein (YFP), which is shown as a yellow LED in Figure
6.11(c). GeneTech use multi-lines text string to represent more complex genetic
circuits.

6.3 Experimentation by Simulation

GeneTech is tested on five genetic circuits (0x0B, 0x70, 0xC4, 0xC8 and 0x0E)
obtained from [14]. The Boolean expression of these five circuits are obtained
from their respective truth tables shown in [14]. The truth table and Boolean
expressions of the circuits, 0x0B, 0x70, 0xC4, 0xC8 and 0x0E, are reproduced
in this thesis and can be seen in Figures 5.3, C.6a(ii), C.7a(ii), C.8a(ii), and
C.9a(ii), respectively.

As mentioned before in Chapter 5 that the inputs B and C, in all SBOL/SBML
circuit models obtained from [14], are interchanged. Due to this change in circuit
inputs, the corresponding change in the logic behaviors of these circuits are also
verified using D-VASim (See Chapter 5 and Appendix C ). Therefore, each of



6.3 Experimentation by Simulation 95

the above mentioned five circuits are tested on GeneTech using two different
expressions i.e. the original shown in [14] and the one obtained from D-VASim
(See Chapter 5 and Appendix C ) with the inputs B and C swapped.

The functionality of the mapping algorithm depends on how the Boolean ex-
pression is optimized in the first step by logic optimization algorithm (shown in
Algorithm 6.1). The optimization via the simulated annealing algorithm mainly
depends on the parameters; initial temperature (T0), temperature coefficient
(TCOF ), and the time to run the algorithm (tE).

In these experiments, each circuit is run for T0 = 10, 20 and 30 0C; TCOF = 0.90,
0.95, and 0.99; and tE = 15, 20, 25, 30 and 40 milliseconds. For all combinations
of these parameters, each circuit is run for 10 times, resulting in a total of 2000
simulation experiments. Based on the mean and the standard deviation values
of these experiments, it was observed that the parameter values, T0 = 10 and
TCOF = 0.90, were suitable for generating the optimized expression. Beside
these, it is understood that the optimization of a Boolean expression mainly
depends on the amount of time the optimization algorithm is run for each circuit,
i.e. tE . It also depends on the combination of minterms selected randomly for
optimization (see the explanation of equation 6.4). For example, the circuit may
reduce the expression into most optimized form when it runs for, say 25ms, as
compared to 20ms. It may also be possible that running the same expression
again for 25ms may not produce the optimized expression. That may happen
because a wrong combination is selected randomly by an algorithm to reduce
the expression. Since the algorithm is not run for sufficiently long amount of
time, therefore the algorithm is unable to come out of the local optimum value
and does not produce the most optimized expression. We therefore report the
time, tE , which ensures that the algorithm will run sufficiently long to produce
the optimized expression even if it stuck in the local optimum value.

Figure 6.12 depicts the experimental results of the genetic circuit 0x0B, ob-
tained from [14]. The results of remaining four circuits are given in Appendix
D. For each circuit, separate results are included for the Boolean logic obtained
originally from [14], and for the one obtained experimentally by using the logic
verification method in D-VASim (See Chapter 5 and Appendix C ). The optimum
time to run the algorithm, tE , on each of the five circuits are mentioned in mil-
liseconds, which shows that each circuit produce optimized expression when run
for specified interval of time. ExpInit, indicates the initial Boolean expression
taken as input. ExpOpt, specifies the expressions after being optimized through
logic optimization algorithm (Algorithm 6.1). The expressions shown in the col-
umn of Synthesis shows the results of logic synthesis algorithm (Algorithm 6.2),
which converts the optimized expression into NOR/NOT form. The SBOLv di-
agrams of all the generated circuits, using mapping algorithm (Algorithm 6.3),
are displayed in the right most column in Figure 6.12.
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For ease of understanding and to be consistent with the conventions used in [14],
the gates are shown in colors. The color legends shown at the top signifies that
the components shown with these colors (in the SBOLv diagrams of generated
circuit) produce the corresponding proteins. The number of genetic gates in
these auto-generated circuits vary from 3 to 6, with no repetition of same genetic
gates (which generates the same output protein) in any of them. In general,
the number of possible solutions are more for the circuits originally obtained
from [14], and less for the Boolean behavior of these circuits obtained using D-
VASim (See Chapter 5 and Appendix C ). In other words, the number of possible
circuits are reduced when the inputs B and C are swapped (also see Appendix
D). In case of circuit x70 (see Appendix D), for the Boolean logic obtained from
D-VASim (with inputs B and C swapped), no circuit is generated because there
is no NOR gate available in the genetic gates library (shown in Figure 6.7) with
PTac and PBad promoters, as inputs.

In case of 0xC8 (see Appendix D), for the logic expression obtained from [14], the
components in circuit 1 and 2 are same, however the input source of generating
SrpR and AmtR proteins are interchanged in both circuits. In circuit 1, AmtR
and SrpR proteins are produced by the PTac and PBad promoters respectively,
but vice versa in circuit 2.

Among several possible solutions which GeneTech proposed for 0x0B circuit in
Figure 6.12, the solution similar to the one mentioned in [14] is marked with
red asterisk (*). Similarly, the solutions proposed in [14] for circuits 0xC4 and
0x70 are also marked with red asterisk (*) (see Appendix D). However, for the
remaining two circuits, 0xC8 and 0x0E, GeneTech did not generate any circuit
similar to their SBOLv diagram shown in [14]. It is because these circuits are
shown in [14] as a multi-level output circuits, which means that the production of
output protein, YFP, depends upon the activities of multiple output promoters.
This is depicted as an OR logic in [14]. For example, the schematic of a circuit
0xC8 (reproduced in Figure C.8a(i)) consists of two NOR gates both of which
are generating YFP, and their combined output is shown as an OR gate. It may
simply be considered as two different NOR gates which can be independently
used to trigger YFP. However, in Figures D.3 and D.4 (Appendix D), the results
of GeneTech show that it is possible to obtain the same logic behavior, using
single-level output circuits.

6.4 Discussion

In this chapter, it has been demonstrated with the help of five case studies
that the proposed tool, GeneTech, can be used to develop a genetic circuit from
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a raw Boolean expression. In [14], a circuit is generated by a random search
of compatible genetic gates using the simulated annealing algorithm. Since
the circuit is created using the non-deterministic search, the solution may be
different every time the process is executed. On the contrary, GeneTech finds all
possible genetic circuits based on a deterministic approach. GeneTech is also
scalable, meaning that it can process newly added genetic gates without any
further modifications.

This tool is typically helpful for both, the biologists and the computer scien-
tists. It is because the computer scientists do not need to learn any biological
terminologies nor in which order the genetic components should be connected
to construct genetic circuits. Biologists, on the other hand, do not need to learn
any programming language or syntax to design genetic circuits in-silico. The
users only need to specify the boolean behavior, in the form of expression, they
want to achieve in a living cell, and GeneTech lists down all the possible circuit
structures to achieve it.



Chapter 7

Parameter Estimation and
Sensitivity Analysis

We have demonstrated that the genetic models can be simulated intuitively in
D-VASim (Chapter 3) and their threshold values, propagation delays (Chapter
4) and logic (Chapter 5) can be analyzed. We have made assumptions about
many of the model parameters such as reaction and degradation rates of chemical
reactions. As demonstrated in Chapter 4, the exact values of these parameters
may have an effect on the overall circuit behavior. Many of these parameters
are very difficult to determine without doing wet-lab experiments. However,
as an alternative, we may do a sensitivity analysis, i.e. determining the range
of values for a certain parameter for which the model behaves correctly. In
this chapter, we show how statistical model checking can be used to make such
sensitivity analyses.

In Section 7.1, it is shown that how D-VASim can assist in model checking of
genetic circuits along with the statistical model checking (SMC) tool like Uppaal
[18]. In Section 7.2 we show an attempt to relate Cello [14] UCF parameters with
iBioSim default simulation parameters to perform more realistic simulations in
D-VASim. In this regard, we derived a relation between some of the iBioSim’s
default parameters and Cello parameters. Then we demonstrate how the model’s
behavior is effected by using real parameter values.
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The work presented in Section 7.1 has been disseminated for publication as
mentioned below.

[67] Hasan Baig and Jan Madsen, "Taming Living Logic using Formal Meth-
ods", Lecture Notes in Computer Science, Springer, pp. 489–501, 2017. (Ac-
cepted)

7.1 Statistical Model Checking with Uppaal

During the design process of genetic circuits, biologists are often interested in
the probability of a system to work under different conditions. Since genetic
circuits are noisy and stochastic in nature, the verification process becomes
very complicated. The state space of stochastic genetic circuit models is usually
too large to be handled by classical model checking techniques. Therefore,
the verification of genetic circuit models is usually performed by the statistical
approach of model checking.

The dynamics of genetic circuits, and hence their correct functioning, are de-
pendent on a large set of parameters (such as reaction and degradation rates)
which in general are very difficult to predict and control. Hence, biologists are
usually interested in determining the sensitivity of their circuits for fluctuations
in these parameters. For instance, it might be a question of interest to find
out, if the circuit behaves as expected when the values of certain parameters
are varied within a specified range. Such sensitivity analysis is well suited for
explorations using statistical model checking (SMC) and the aim of this work is
to show how Uppaal SMC [18] can be used to address the problem, effectively
taming living logic.

Model checking of biological systems is getting popular as it is an effective
means of analyzing the dynamics of complex biological systems. Besides many
interesting work in this domain [68–76], Madsen et al. [77] proposed a stochastic
model checking approach which greatly speeds up the search process of genetic
design space by using the numerical techniques (Markov chain analysis). In this
work, multiple threshold levels are used, to test each circuit, which are obtained
by graphing reaction rates and selecting few values around the inflection point.
However, we used the D-VASim tool to obtain the specific value of threshold
level and used it for model checking in Uppaal.

In this section, a workflow for checking genetic circuit models using a statis-
tical model checker (Uppaal SMC) and the stochastic simulator (D-VASim) is
presented. We demonstrate with experimentation that the proposed workflow
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is not only sufficient for the model checking of genetic circuits, but can also
be used to design the genetic circuits with desired timings. In particular, we
performed experimentation on genetic circuits models and explored their design
parameter sensitivity using Uppaal SMC [18]. There are certain number of tasks
which cannot be performed in Uppaal [15]. We therefore used D-VASim [16] to
address those, which will be detailed in the experimentation section.

7.1.1 Methodology

To determine the range of parameter values for which the genetic circuit would
work, it is first important to know the threshold concentration levels of the
inputs of those circuits. As stated in Definition 4.1 in Chapter 4, the threshold
level of a genetic circuit can be defined as the minimum concentration of input
protein(s), which causes the average concentration of output protein to cross
the level of input protein(s) concentration.

D-VASim [16] is a simulation tool which supports the capability of analyzing the
threshold value and timings of genetic circuits through an automated process.
Once the correct threshold levels are found, the inputs are triggered to that level
and the circuit parameters can be varied to determine if the circuit still behaves
correctly. This analysis could be very time consuming for large genetic circuit
models with more inputs. For large-scale circuits, it is difficult to determine or
verify the expected logic of a circuit without careful analysis. To determine or
verify the logic of a genetic circuit, it is important to know the correct input
combination with the correct threshold levels which trigger the output of the
circuit. This may apparently become a tedious task to check different input
concentration levels for each input combination.

7.1.2 Role of D-VASim in model checking

The search process of threshold value can be automated by the use of statistical
model checking in Uppaal [15]. Uppaal is an integrated tool environment for
modeling, verification and validation of real-time systems modeled as networks
of timed automata. Uppaal SMC [18] is an extended plug-in tool to Uppaal
which allows the user to check the expected behavior of models in the form of
probability distributions.

In Uppaal SMC, it is possible to let the tool arbitrarily select any input concen-
tration value, within a specified range, and see if the chosen value significantly
effects the output concentration level. This can, however, only be achieved when
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Figure 7.1: Experimental flow of genetic circuit model checking and verifica-
tion.

the correct input combinations triggering the output of the circuit are known.
As Uppaal does not have the capability to automatically detect the input com-
bination which triggers the output of the circuit, the threshold value analysis of
a genetic circuit cannot be performed automatically in Uppaal. We also tried to
find the threshold concentration levels for the specific input combination (which
triggers the output concentration). However, Uppaal SMC was unable to iden-
tify the appropriate threshold level because of the infinite-sized search-space of
floating-point concentration values.

As stated before, D-VASim [16] is the only tool which allow users to perform
threshold value and propagation delay analysis through an automated process
[39]. However, D-VASim is not capable of performing the automated statistical
model checking. Thus, we used D-VASim for threshold value analysis and then
perform the statistical model checking in Uppaal to determine the range of
circuit parameters within which the circuit satisfy the desired behavior.

The proposed experimental flow of checking genetic circuit models is shown in
Figure 7.1. The genetic circuit models developed in the SBML [78] are used in
this work. The SBML model of a genetic circuit is used as input to D-VASim.
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Figure 7.2: Genetic toggle muller-C element [21]. (a) SBOLv diagram. (b)
Circuit schematic. (c) Truth table.

D-VASim analyze the threshold and propagation delay (details are given in next
section). The threshold value is then used in Uppaal to trigger the input levels
to this value and observe the output behavior of the circuit while varying the
circuit parameters. The effects of varying parameters on the threshold value
and propagation delay of the circuit are then analyzed in D-VASim.

7.1.3 Experimentation by Simulation

In this work, the genetic circuit models from [21] are tested, by varying the
degradation rate parameter (kd) to determine the range within which the circuit
exhibits the expected behavior. The aim is to propose an experimental flow for
model checking of genetic circuits. To demonstrate that this flow can be applied
to a complex genetic circuit as well, the experimental results of a small (NAND
gate) and a reasonably large (toggle muller-C element) genetic circuit models are
included. The NAND gate contains 5 species and 5 kinetic reactions, whereas
the toggle muller-C element contains 20 species and its behavior is defined by
18 kinetic reactions.

The SBOLv diagram, circuit schematic and the truth table of the toggle muller-
C element are shown in Figure 7.2 (a), (b) and (c), respectively. In Figure
7.2(a), the input protein A suppresses promoter P1 to produce protein D, which
in turn inhibits promoter P4 to reduce the production of protein F, and so on.
The concentration of the output species, C, toggles when both of the inputs are
changed together, else the output retains its previous state.
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Figure 7.3: The process of a genetic NAND gate to produce 10 molecules of
the GFP when the input LacI is not present in a cell. (a) Uppaal
interpretation. (b) Kinetic Reaction.

Table 7.1: Threshold and propagation delay values obtained in D-VASim prior
to model checking in Uppaal.

Circuit name Threshold value
(High)

Threshold value
(low)

Propagation delay
value

NAND 15 5 324 (±51.61)
Toggle Switch 10 5 1108 (±272.89)

Table 7.1 shows the threshold and propagation delay values for both of the
circuits obtained from D-VASim. The high threshold value specifies the in-
put concentration level above which the logic is considered high, and the low
threshold value specify the input concentration level below which the logic is
considered low. The propagation delay, as defined in Definition 4.2 in Chapter
4, is the time from when the input concentration reaches its threshold value
until the corresponding output concentration crosses the same threshold value.

Uppaal uses a continuous time markov chain model (CTMC) for model checking,
therefore the SBML models were first converted into CTMC models using the
simple conversion utility in Uppaal. It creates a separate automaton for each
of the reaction kinetics defined in the SBML file. For instance, Figure 7.3(a)
shows one of the processes, in the genetic NAND gate circuit, which represents
the kinetic reaction (Figure 7.3(b)) to produce 10 molecules of GFP when the
input protein LacI is not sufficiently present in the cell. In Figure 7.3(b), the
value of ncLacIP1 is 2, due to which the factor KrLacIP1*LacI is multiplied
twice in Figure 7.3(a).

We then created a separate process for triggering all the possible input com-
binations to their threshold values (obtained from D-VASim), as shown in
Figure 7.5(a). In this figure, each node represents the automaton (or state)
and each edge represents the action. For example, the automaton "Begin-
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ning" starts at zero time units and fires the first edge to trigger the input
concentrations, A and B, to 20 molecules. This state is defined by an in-
variant "x <= Latest&&afterTrigger1′ == 0", where the value of Latest
is 2000, x is the main clock and afterTrigger1 is a local clock for this state.
The edge is fired after the delay of 2000 time units (defined by S1Delay)
and runs for next 2000 time units (defined by S2Delay) i.e. until the time
equals 4000 time units. The edge is guarded by the assignment expression
"x >= S1Delay&&x < S2Delay". Another automaton process is used to vary
the values of kd as shown in Figure 7.5(b). During each iteration of simula-
tion, the value of kd is chosen randomly from the range defined by KdInit and
Kdfinal values. Then the UPPAAL SMC tool verifies the user-defined queries.
An example query is shown in Figure 7.5(c), where the model is required to be
simulated 100 times each for 10,000 time units and to check if the concentra-
tion of output protein C is less than 10 molecules when the state "S4Done" is
triggered.

Figure 7.4: The process automaton for triggering inputs and varying kd.

Figures 7.5 and 7.6 shows the Uppaal SMC simulation results of the genetic
NAND and the toggle muller-C element switch circuits, respectively. These
figures show all the simulation traces for 100 iterations. All possible input com-
binations are applied and the correct operation is verified within a defined range
of kd. Due to the stochastic nature of a model, the probability of an expected
behavior cannot be 100 percent satisfied when the value of kd is randomly chosen
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Figure 7.5: Statistical model checking of the genetic NAND gate in Uppaal.

from a defined range. We, therefore, set the probability of the expected behavior
to be greater than at least 90 percent as the acceptance criteria. Inputs corre-
spond to the applied combination of input proteins over the course of simulation
time. The logic-1 for the NAND gate corresponds to 15 or more molecules and
logic-0 corresponds to 5 or less molecules. For the toggle muller-C element, the
logic-1 corresponds to 20 or more molecules and logic-0 corresponds to 10 or
less molecules, as obtained from D-VASim (see Table 7.1).

Probability values at the bottom of both Figures 7.5 and 7.6 signifies the prob-
ability of the expected behavior of a circuit for all possible input combinations,
where each input combination is applied for 1000 time units for the NAND gate
and 2000 time units for the toggle muller-C element. These values are chosen
sufficiently larger than their respective propagation delay values, estimated from
D-VASim, to ensure that the appropriate amount of delay is provided to observe
the effects of applied input combinations on the output of the circuit.
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Figure 7.6: Statistical model checking of the genetic toggle muller-C element
in Uppaal.

Satisfying Simulations indicates the percentage of simulations which satisfy the
defined condition for specific input combination. These conditions are set ac-
cording to the truth tables of respective circuits. For example, for the NAND
gate, the condition to be checked for when the input combination is 11, is to see
if the concentration of output protein, GFP, falls below its lower threshold level
i.e. 5 molecules. The NAND gate circuit exhibits the probability of greater than
98 percent to work correctly when the value of kd varies between 45x10-4 and
85 x10-4. Similarly, the toggle muller-C element is at least 93 percent probable
to work correctly when the value of kd varies between 60x10−4 and 85x10−4.
Outside these ranges of kd, the expected behavior do not satisfy the acceptance
criteria mentioned above. In a similar manner, other circuit parameters can be
varied to check the output response of genetic circuits.

Finally, we used D-VASim to observe how the changes of kd values impact the
threshold value and the output of a circuit. In Table 7.2, the effects of the
boundary values of kd for both circuits are shown. For example, in the case of
the NAND gate, the effects of lower and higher-bound values of a kd, 45x10−4
and 85x10−4, respectively, are checked. It is observed that the upper threshold
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Table 7.2: Threshold and propagation delay values obtained in D-VASim for
upper and lower bounds of kd values found in Uppaal.

Circuit name kd
(x10−4)

Threshold
value (High)

Threshold
value (Low)

Propagation
delay

45 20 10 554 (± 56.07)NAND 85 15 0 274 (± 91.78)
60 20 10 1228 (± 135.11)Toggle Switch 85 10 5 833(± 97.41)

concentration level required to trigger the output of the NAND gate is increased
from 15 to 20 molecules when the value of kd was decreased from 75x10−4
(default value) to 45x10−4. An increment in the propagation delay value is also
observed. The latter is due to the fact that a decrease in the degradation rate
causes the output response of the circuit to be slower, and thus more input
concentration may be required to trigger the output. If the threshold value of
a circuit is kept to its previous value, i.e., 15 at kd = 45x10−4, the output may
appear after a very long time; in other words, the propagation delay increases
further.

Likewise, when the value of kd is increased to 85x10−4, the threshold values as
well as the propagation delays are decreased. Similar observations have been
made for the toggle muller-C element as shown in Table 2. These observations
indicate the minimum-high and maximum-low threshold values. For example,
in order for the toggle muller-C element to work within a range of kd between
60x10−4 and 85x10−4, the minimum-high threshold value would be 20 molecules
and a maximum-low threshold value would be 10 molecules.

7.2 Semi-realistic Simulation with Cello UCF pa-
rameters

It is mentioned in [14] that out of 60 genetic circuits, 15 did not work as expected
when tested in wet-lab. We were interested in determining the cause of their
failures through simulation with the hope that the timing analyses may help in
identifying the cause of failure. In order to capture the correct behaviour, it
is important to simulate those circuits with the same parameters and circum-
stances under which they were actually carried out in the wet-lab. We were
interested in finding out the real values of the parameters (use by iBioSim [17])
for the genetic circuits developed by Nielsen et al. [14]. The default values of
these parameters, used by iBioSim, [21, 79] are reproduced in Table 7.3. After
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Table 7.3: Default parameter values use in iBioSim and originally disclosed
in [21,79].

Parameter Symbol Value
Forward repression binding rate krf 0.5
Reverse repression binding rate krr 1
Forward activation binding rate kaf

0.0033
Reverse activation binding rate kar

1
Forward RNAP binding rate kof 0.033
Reverse RNAP binding rate kor 1
Forward activated RNAP binding rate kaof 1
Reverse activated RNAP binding rate kaor 1
Stoichiometry of binding nc 2
Initial RNAP count nr 30
Open complex production rate ko 0.05
Basal production rate kb 1.00E-04
Initial promoter count ng 2
Stoichiometry of production np 10
Activated production rate ka 0.25
Degradation rate kd 0.0075
Forward complex formation rate kcf 0.05
Reverse complex formation rate kcr 1

discussion with the authors of [14] at BU and MIT, it was concluded that the
real values of the parameters (shown in Table 7.3) cannot be determined easily
through the available experimental setup.

As demonstrated in Chapter 4, the timings of genetic circuit depends on the
value of degradation rate (kd), therefore we first made an attempt to derive a
relation between degradation rate (kd) of the genetic circuit components and
the response function parameters (see equation 7.3) disclosed in [14].

7.2.1 Relation between iBioSim default parameters and
Cello response parameters

Consider the circuit schematic and the SBOLv diagram of a two-input genetic
AND gate (obtained from [14]) shown in Figure 7.7(a) and (b), respectively.
The promoters PTac and PTet control the production of BM3R1 and SrpR
proteins respectively. The generated proteins BM3R1 and SrpR in turn repress
their respective output promoters PBM3R1 and PSrpR, respectively. When the
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activities of promoters PBM3R1 and PSrpR are suppressed, the production of
protein PhlF will be suppressed and thus the final output promoter PPhlF will
generate YFP protein. The simplest form of this circuit model is shown in
Figure 7.7(c). This figure indicates that the input promoters PTac and PTet

suppresses the promoters PBM3R1 and PSrpR, respectively. When these two
promoters are suppressed, they will not produce the output protein PhlF to
suppress the corresponding promoter PPhlF . When the promoter PPhlF is not
suppressed, it will produce the output YFP protein.

Figure 7.7: The genetic AND gate shown in [14]. (a) Circuit schematic. (b)
SBOLv diagram. (c) Simplified model.

Lets assume that the degradation rates (kd) of all genetic components are the
same, and the rate of production is ko, then the rate of change in PBM3R1 can
be defined using Hill function [80] as

dPBM3R1

dt
=

ko ×Kn
r

Kn
r + Pn

Tac

− kd × PBM3R1 (7.1)

where:

Kr = Repression coefficient i.e. the rate at which PTac represses PBM3R1

n = Hill coefficient, which controls the steepness of the switch between full
to zero repression.

kd = degradation rate.

At steady state;
dPBM3R1

dt
= 0
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Therefore, equation 7.1 =⇒

ko ×Kn
r

Kn
r + Pn

Tac

− kd × PBM3R1 = 0

or

PBM3R1 =
(ko ×Kn

r )/kd
Kn

r + Pn
Tac

or

PBM3R1 =
ko/kd

1 + (PTac/Kr)n
(7.2)

In [14], the empirical response function with a relation between input and output
promoter activities is also defined by a Hill function, as shown in equation 7.3.

y = ymin +
(ymax − ymin)K

n

xn +Kn
(7.3)

where:

y = Output promoter activity
x = Input promoter activity
ymax = the maximum observed promoter output value.
ymin = the minimum observed promoter output value.
K = Repression threshold (the input value at which the output is half

maximum).
n = Hill coefficient.

Lets assume that the value of ymin is too small as compared to the second term
in equation 7.3. Thus, ignoring the first ymin term in equation 7.3 =⇒

y =
(ymax − ymin)K

n

xn +Kn

or

y =
(ymax − ymin)

1 + (x/K)n
(7.4)

Hence for the output promoter y = PBM3R1 and input promoter x = PTac,
equation 7.4 =⇒

PBM3R1 =
(PBM3R1max − PBM3R1min)

1 + (PTac/K)n
(7.5)
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Equating equations 7.2 and 7.5 =⇒

ko/kd
1 + (PTac/Kr)n

=
(PBM3R1max

− PBM3R1min
)

1 + (PTac/K)n
(7.6)

or

kd =
ko

PBM3R1max − PBM3R1min

(7.7)

In general,

kd =
ko

ymax − ymin
(7.8)

Also from equation 7.6,
Kr = K (7.9)

n = n (7.10)

Hence, the degradation rate (kd) is inverse to the difference of the maximum
and minimum activities of the output promoter; and the repression threshold
K is equivalent to the rate at which the input promoter represses the output
promoter Kr. The Hill coefficients values are also equivalent which means that
the values of n for respective promoters, shown in Figure 7.10, can be used in
place of the default value of nc shown in Table 7.3.

7.2.2 Modification of kinetic laws in D-VASim

In Cello [14], the circuit components are chosen from the library using heuristic
approach (via simulated annealing algorithm), therefore the generated circuit for
same functionality may have different circuit components everytime when the
circuit is run. The original model of the genetic AND gate shown in [14] indicates
that the input promoter PTac generates BM3R1 protein which suppresses its
corresponding output promoter PBM3R1, as shown in Figure 7.7(a) and (b).

However, when we ran the same circuit on Cello again, the heuristic approach
chose to map the inverter based on AmtR protein instead of BM3R1 protein.
This means that input promoter PTac generates AmtR protein which suppresses
its corresponding output promoter PAmtR. The SBOL-SBML converted dia-
gram of this model, using SBOL-SBML conversion plugin in iBioSim [61], is
shown in Figure 4.9. This figure also includes the input inducers (see Section
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Figure 7.8: SBML design of the genetic AND gate circuit [14] in iBioSim.

4.2.6 for more details). For convenience, Figure 4.9 is reproduced here again as
Figure 7.8.

The default and the modified kinetic laws of genetic AND gate model are shown
in Figure 7.9. For simplification, the RNAP related parameters (kof , kor and
nr) shown in default expressions are ignored in the modified kinetic laws (shown
in red). The values of ymax, ymin, krr and nc for respective promoters can
be obtained from the Cello UCF file. These values, for all available promoters,
are shown in Figure 7.10. We used the default iBioSim values for the remaining
parameters ko, krf and kcr . The ymin and ymax values given in [14] describe
the input and output promoter activities in the circuit and not in the input and
output sensor blocks. Therefore, the iBioSim default values are used for the
parameters involved in the input and output blocks. The output block consists
of YFP protein, and the input block consists of IPTG, aTc, LacI, IPTG-LacI
complex, TetR, and aTc-TetR complex.

Figure 7.10 shows the high-level integration flow of D-VASim and Cello using
Cello UCF and iBioSim simulation parameters. Once the SBOL model of any
genetic circuit [14] is converted to SBML model using [61], it can be loaded
into D-VASim. A user can decide to proceed with analyzing the model in D-
VASim either using iBioSim tool’s default parameters or the parameters from
Cello UCF.
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Figure 7.9: The default and modified kinetic laws of genetic AND gate model.
The modified kinetic laws are shown in red under each of their
corresponding default kinetic laws, shown in black.

If an option "Obtain parameters from Cello UCF", shown in Figure 3.2, is
marked checked, D-VASim first parse the Cello UCF file. It then extracts the
default kinetic laws and remove RNAP related parameters. Then it scans for the
promoter names in kinetic laws and replace the values of nc and Krr with the
corresponding values of n andK respectively from Cello UCF parameters. In the
very end, it calculates and replaces the value of kd with ko/(ymax−ymin); where
ymax and ymin are the maximum and minimum activities of the corresponding
promoters; and ko is the rate of production. Since the actual value of ko is not
known, therefore D-VASim uses its default value (see Table 7.3).
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Figure 7.10: The integration flow of Cello UCF parameters and D-VASim.

7.2.3 Experimentation by Simulation

We performed simulations on the model of a genetic AND gate, obtained from
[14] (Figure 7.7), using both the iBioSim’s default and the modified kinetic laws
(shown in Figure 7.9). The intermediate species used in this circuit are SrpR,
AmtR and PhlF . The promoters corresponding to these species are used with
the specific ribosome binding sites (RBS) denoted by S2, A1, and P3 for SrpR,
AmtR and PhlF , respectively, as shown in Figure 7.9. Each of the RBS for their
respective promoters have different values of ymax, ymin, K, and n, as shown in
Figure 7.10. For example, it can be noticed in Figure 7.10 that the production
of PhlF protein is possible with three different RBS i.e., PhlF_P1, PhlF_P2,
and PhlF_P3. Similarly, there are four possibilities for SrpR protein, and so
on.

The analog and digital simulations plots of the genetic AND gate (in D-VASim),
with default iBioSim’s and the modified kinetic laws, are shown in Figure 7.11
and 7.12, respectively. The threshold value for all species are assumed to be
12 molecules in both cases. Also, instead of applying all possible input combi-
nations in these experiments, only the input combination logic 11 (both inputs



116 Parameter Estimation and Sensitivity Analysis

Figure 7.11: D-VASim simulation plots of the AND gate, using the default
kinetic laws of iBioSim.

HIGH) is applied to observe the circuit’s response. From equation 7.8, using
the default value of ko = 0.05 and the values of ymax and ymin shown in Figure
7.10, the degradation rates of AmtR, SrpR and PhlF proteins are found to be
0.0133, 0.0239 and 0.0073, respectively. Also the (K, n) values used for AmtR,
SrpR and PhlF are, in order, (0.07, 1.6), (0.04, 2.6) and (0.23, 4.2).

Due to the changes in these values, the most prominent effect which can be
noticed, in Figure 7.12, is that the propagation delay of the circuit is increased
when simulated with the modified kinetic laws and real parameter values. Also,
3.18x increase in the degradation rate of SrpR (in comparison to its default
value) makes it noisy and oscillate around logic 0 and 1, as shown in Figure
7.12. It is also noticed that the degradation rate of PhlF protein (with P3
RBS) is found almost similar to its default value i.e., 0.0073. However, the
concentration of PhlF protein, during the first 700 time units, is found almost
doubled when simulated with the modified kinetic laws. This is due to the
higher value of nc, i.e., 4.2, obtained for the P3 RBS used in the production of
PhlF protein. These observations suggests that the functionality of a circuit,
i.e., AND logic, remains the same, however the behavior of species and their
timings are changed.

The video demonstration of this approach can be seen at https://www.youtube.

https://www.youtube.com/watch?v=9Ds12Qb6PL4
https://www.youtube.com/watch?v=9Ds12Qb6PL4
https://www.youtube.com/watch?v=9Ds12Qb6PL4
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Figure 7.12: D-VASim simulation plots of the AND gate, using the modified
kinetic laws.

com/watch?v=9Ds12Qb6PL4. In this video, the genetic AND gate circuit is sim-
ulated without the input sensor block. That is the inputs are applied by varying
the activities of input promoters, PTac and PTet.

7.3 Discussion

This chapter is an extended and ongoing work of this thesis in which the sensi-
tivity of model’s parameters on its behavior is analyzed. First, an experimental
workflow for checking genetic circuit models using statistical model checking
and stochastic simulation is proposed. Two different-sized genetic circuit mod-
els [21] are used to demonstrate that the proposed workflow can be applied for
the timing and threshold values analyses of any genetic circuit model. We var-
ied the design parameters of the genetic circuits and checked their probabilities
of working correctly. Furthermore, we analyzed the effects of changing design
parameters on the behavior of a given circuit. The proposed workflow can be
used to check any other property of a genetic circuit; such as the probability of
a circuit to reach a certain state within a specific amount of time.

Next, we simulate the SBML model of a real genetic AND gate [14] using the

https://www.youtube.com/watch?v=9Ds12Qb6PL4
https://www.youtube.com/watch?v=9Ds12Qb6PL4
https://www.youtube.com/watch?v=9Ds12Qb6PL4
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real parameter values. To achieve this, we derived a relationship between the
parameters used in iBioSim during the SBOL-SBML conversion process [21,79]
and the response function parameters mentioned in [14]. There are several
important factors which have to be considered in order to simulate the model’s
behavior close to reality. The parameter values and their units use in simulation
should be real (or at least their scaling factor should be known). For example,
in case of the genetic AND gate simulation with the modified kinetic laws, the
propagation delay was found to be approximately 700 time units. There must
be a scaling factor, which should convert this 700 time units into a real time
value. It is also important to know if the derived relationships (equation 7.8 -
7.10) holds true for more complex circuits. The effort made to derive the above
mentioned relations is the very initial attempt to relate real parameter values
with simulation parameters. We believe that simulating the circuit models with
real parameters will improve the model’s reliability and will help debugging the
circuits more effectively.



Chapter 8

Conclusions and
Future Work

This chapter summarizes the work presented in this dissertation and indicates
some interesting directions in which this work can be extended.

8.1 Summary and Conclusions

The primary subject of this thesis is to present methods, algorithms, and au-
tomated tools for the simulation, analysis, verification and synthesis of genetic
logic circuits.

First, a simulation tool, D-VASim, is developed, which allows a user to perform
interactive run-time experiments in a virtual laboratory environment. It is solely
designed for the simulation and analysis of genetic logic circuits, however other
SBML-based models can also be analyzed. This tool has been extensively tested
with several genetic circuit models presented in [21] and [14]. The experimental
results presented in this thesis suggest that the concept of virtual experimenta-
tion may help users to perform more insightful in-silico experiments.

Furthermore, a methodology is proposed to perform the timing analysis of ge-
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netic logic circuits. This methodology is implemented as a plug-in tool in D-
VASim. With the help of this feature, a user can analyze the input threshold
value and the propagation delay of a genetic circuit. The effects of varying cir-
cuit parameters on the threshold value and propagation delay of different genetic
circuits have been analyzed. We observed that the threshold value, propagation
delay, and the design parameter (like degradation rate, kd) are all interlinked.
The propagation delay of a genetic circuit is inversely related to kd. The out-
put of a circuit becomes stable and unstable for lower and higher values of kd,
respectively. The large values of kd also contributes in the reduction of thresh-
old value because, for high kd values, a circuit becomes faster and thus a small
input threshold concentration is enough to trigger its output. It has also been
observed that the value of kd cannot be increased beyond a certain point as it
makes the circuit’s output unstable and thus distorts the intended functionality
(see Chapter 4). We believe that the introduction of timing analysis of genetic
logic circuits will be an interesting domain for further research. Similar to elec-
tronic circuits, the timing analysis of genetic circuit may become an essential
design characteristic when it is required to make sure that the circuit produces
the desired output within the specified interval of time.

Moreover, D-VASim with its support of automatic Boolean logic extraction has
the potential to improve the productivity of researchers for the logic analysis
of bio-models. With this capability, a user may not only be able to verify
the input-output relation of genetic logic circuits but is also able to discover the
hidden Boolean logic that exists in any other SBML-based biological model. We
demonstrated that the algorithm estimates the correct logic of genetic circuits in
terms of boolean expression along with its percentage fitness in the experimental
data. We performed experimentation on some of the genetic circuit models
disclosed by Nielsen et al. in [14]. These circuits are generated by an automated
tool named Cello. We observed that the circuits shown in [14] are structurally
as well as behaviorally different when they are generated again from Cello. The
behavioral changes in these genetic circuits have been correctly verified through
the proposed logic analysis algorithm in D-VASim. Apart from this, it has also
been observed that the logical behavior of a genetic circuit seems to be effected
by variations in the threshold values (see Chapter 5). The evaluated performance
of the algorithm indicates that it took about 8.4 seconds to estimate the logic
of a complex genetic circuit (having 3 inputs with up to 7 genetic gates).

Another tool, named GeneTech, is also developed which allows a user to syn-
thesize genetic circuits with very high level description i.e. by specifying the
Boolean expression only. GeneTech search for the right biological components
from the genetic gates library [14] and gives a number of different possible
genetic circuits to achieve the same functionality. This tool has also been ex-
perimented with a number of genetic circuit models presented in [14]. It has
been shown that the GeneTech tool, using the genetic gates library, lists down
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all the possible solutions to achieve the desired functionality.

In addition to the abovementioned contributions of this thesis, an experimental
workflow is also proposed for model checking of genetic circuits using Uppaal
and D-VASim. Moreover, a methodology is presented to perform simulation
using the real parameter values. To achieve this, efforts has been made to relate
the iBioSim default parameters with the Cello response function parameters.
We demonstrated how the behavior of a model changes using real parameter
values. Though we have also included the video demonstration but this feature
is not yet made available for public use, because it is an on-going work.

Ultimately, we believed that the tools and methods presented in this thesis can
contribute in the advancement of Bio Design Automation industry. It is further
hoped that the synthetic biologists and/or engineers could use these tools to
design and analyze genetic circuits more efficiently.

8.2 Research Impact

D-VASim was released for public use in March 2016, and after being accepted for
publication in Bioinformatics Journal in September 2016, it has been exposed
to the synthetic biology community. It has been observed that D-VASim has
already started to create impact on research world wide in a short span of time.
The download metrics of D-VASim are mentioned below:

• Accessed from 54 different countries (202 different cities) across the globe

• Downloaded 434 times for Windows OS

• Downloaded 445 times for Mac OS

• Quick Start Guide (QSG) has been download 491 times

Figure 8.1 shows some other metrics about D-VASim obtained from google ana-
lytics for the period of March 01, 2016 - September 25, 2017. This figure shows
that during the span of past 19 months, D-VASim download page has been ac-
cessed 3523 times by 884 users. Out of these 884 users, 74.28 percent of them
are new users. Also, the highest number of sessions (i.e. users actively engaged
to website) is made from United Kingdom.
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Figure 8.1: D-VASim download metrics during Mar 1, 2016 - Sept. 25, 2017.

8.3 Future Work

There are substantial possibilities to extend the work which has been presented
in this thesis. These possibilities are categorized into experimental and imple-
mentation viewpoints.

8.3.1 Extension from an experimental viewpoint

The experimentation on these tools can be performed with more genetic circuit
models. For example, as it is stated in Chapter 3 that the ODE simulation is
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tested with the first 400 cases of the SBML benchmark suite. After upgrading
D-VASim to incorporate the remaining SBML components, other cases of SBML
benchmark suite can be tested.

The experimentation related to timing analysis (see Chapter 4) is performed on
the genetic circuit models proposed by Myers [21]. It can be further extended
to analyze the timings of real genetic circuits developed by Alec A. K. Nielsen
et al. [14]. Furthermore, the timing analyses of the separate components of each
individual circuit can be performed to characterize them into parts library. This
will help further in selecting the right genetic components while constructing a
genetic circuit to meet the timing requirements.

Similarly, the technology mapping tool GeneTech can be tested with the re-
maining genetic circuits given in [14], for which it is required to incorporate the
capability of supporting the multi-level output circuits.

The methodology of relating simulation parameters with the real ones (Cello
UCF) can also be extended and tested on more complex genetic circuit models.

8.3.2 Extension from an implementation viewpoint

D-VASim and GeneTech both has the potential to be enhanced in many possible
ways. Some of them are given below:

• SBML Packages Support
D-VASim can be upgraded to support the SBML packages given at http:
//sbml.org/Documents/Specifications/SBML_Level_3/Packages.

• SED-ML Support
The support of SED-ML (Simulation Experiment Description Markup
Language) [81] can be included in D-VASim to exchange the descriptions
of interactive simulation of computational models. This typically would
be an important advancement in D-VASim because it supports dynamic
user interaction with simulation.

• Speeding up analysis on parallel processors
As mentioned in Chapter 4 that, depending on the parameter values, the
timing analysis for complex circuits can take up to an hour. To speed-
up the analysis process, the functionality can be included in D-VASim to
run the algorithm on parallel processors, typically on embedded graphics
processor units (GPUs).

http://sbml.org/Documents/Specifications/SBML_Level_3/Packages
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages
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• Upgrades in GeneTech
GeneTech is currently a prototype and immature tool. To make it user
friendly, its GUI has to be developed. It could either be done on JAVA to
make it a standalone tool, or it can be integrated as a plug-in to D-VASim.

GeneTech can be further enhanced to process multi-output circuits. It
requires upgrading the existing classes to process multiple expressions.
Also, more design constraints can be added to increase the chances that
the generated circuits would work correctly in the laboratory.

The number of produced solutions may increase with the increase in size
of gates library. To avoid this scenario, the design constraints can be
defined to filter out the bad-solutions. Though, GeneTech filters out the
bad solutions if it contains any unintended feedback loops (see description
of Figure 6.10). Similarly, other constraints can be added to avoid having
long list of solutions. For instance, the solution may also be categorized
as a bad solution if the number of logical components in it is greater than
the one specified by user.

Furthermore, the GeneTech tool, at its current state, supports technology
mapping of genetic gates based on repression. In future, it will be upgraded
to support genetic gates based on other technologies, such as activation.

• SBOL export The current version of GeneTech uses multi-line text string
to represent the structure of a genetic circuit. This is not a standard way
to represent genetic circuits. It is therefore important to output circuit
description in a standardized form, such as SBOL data or SBOLv.
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Appendix A

D-VASim –
Supplementary Data

A.1 ODE and Stochastic Simulation Results

The screen shots of ODE and stochastic simulations of genetic AND, NAND,
NOR, NOT, and OR circuits [21] are given below. These screen-shots were
captured automatically by D-VASim when the simulation was stopped by the
user.
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Figure A.1: Simulation of genetic AND gate circuit [21]. (a) ODE simulation.
(b) Stochastic simulation.
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Figure A.2: Simulation of genetic NAND gate circuit [21]. (a) ODE simula-
tion. (b) Stochastic simulation.
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Figure A.3: Simulation of genetic NOR gate circuit [21]. (a) ODE simulation.
(b) Stochastic simulation.
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Figure A.4: Simulation of genetic NOT gate circuit [21]. (a) ODE simulation.
(b) Stochastic simulation.
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Figure A.5: Simulation of genetic OR gate circuit [21]. (a) ODE simulation.
(b) Stochastic simulation.



Appendix B
Timing Analysis –

Supplementary Data

The simulation traces and the timing analysis results of all the nine circuits
from [21] and an AND gate from [14] are given below.

B.1 Ckt 1 – NOT gate

The simulation results of the genetic NOT gate circuit for all five values of kd
are shown below:

(a) At kd = 0.0015.
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(b) At kd = 0.0055.

(c) At kd = 0.0095.

(d) At kd = 0.0135.
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(e) At kd = 0.0215.

Figure B.1: Timing analysis and simulation traces of Ckt 1 - NOT gate at kd
= (a) 0.0015. (b) 0.0055. (c) 0.0095. (d) 0.0135. (e) 0.0215.



144 Timing Analysis – Supplementary Data

B.2 Ckt 2 – NAND gate

The timing simulation results of the genetic NAND gate circuit for all five values
of kd are shown below:

(a) At kd = 0.0015.

(b) At kd = 0.0055.

(c) At kd = 0.0095.



B.2 Ckt 2 – NAND gate 145

(d) At kd = 0.0135.

(e) At kd = 0.0215.

Figure B.2: Timing analysis and simulation traces of Ckt 2 - NAND gate at
kd = (a) 0.0015. (b) 0.0055. (c) 0.0095. (d) 0.0135. (e) 0.0215.
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B.3 Ckt 3 – AND gate

The simulation results of the genetic AND gate circuit for all five values of kd
are shown below:

(a) At kd = 0.0015.

(b) At kd = 0.0055.

(c) At kd = 0.0095.
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(d) At kd = 0.0135.

(e) At kd = 0.0215.

Figure B.3: Timing analysis and simulation traces of Ckt 3 - AND gate at kd
= (a) 0.0015. (b) 0.0055. (c) 0.0095. (d) 0.0135. (e) 0.0215.
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B.4 Ckt 4 – NOR gate

The simulation results of the genetic NOR gate circuit for all five values of kd
are shown below:

(a) At kd = 0.0015.

(b) At kd = 0.0055.

(c) At kd = 0.0095.
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(d) At kd = 0.0135.

(e) At kd = 0.0215.

Figure B.4: Timing analysis and simulation traces of Ckt 4 - NOR gate at kd
= (a) 0.0015. (b) 0.0055. (c) 0.0095. (d) 0.0135. (e) 0.0215.
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B.5 Ckt 5 – OR gate

The simulation results of the genetic OR gate circuit for all five values of kd are
shown below:

(a) At kd = 0.0015.

(b) At kd = 0.0055.

(c) At kd = 0.0095.
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(d) At kd = 0.0135.

(e) At kd = 0.0215.

Figure B.5: Timing analysis and simulation traces of Ckt 5 - OR gate at kd
= (a) 0.0015. (b) 0.0055. (c) 0.0095. (d) 0.0135. (e) 0.0215.
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B.6 Ckt 6 – Delay Circuit

The simulation results of the genetic Delay Circuit for all five values of kd are
shown below:

(a) At kd = 0.0015.

(b) At kd = 0.0055.

(c) At kd = 0.0095.
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(d) At kd = 0.0135.

(e) At kd = 0.0215.

Figure B.6: Timing analysis and simulation traces of Ckt 6 - Delay Circuit at
kd = (a) 0.0015. (b) 0.0055. (c) 0.0095. (d) 0.0135. (e) 0.0215.
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B.7 Ckt 7 – Toggle Muller C-Element

The simulation results of the genetic Toggle Muller C-Element circuit for all five
values of kd are shown below:

(a) At kd = 0.0015.

(b) At kd = 0.0055.



B.7 Ckt 7 – Toggle Muller C-Element 155

(c) At kd = 0.0095.

(d) At kd = 0.0135.

(e) At kd = 0.0215.

Figure B.7: Timing analysis and simulation traces of Ckt 7 - Toggle Muller
C-Element at kd = (a) 0.0015. (b) 0.0055. (c) 0.0095. (d) 0.0135.
(e) 0.0215.
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B.8 Ckt 8 – Majority Muller C Element

The simulation results of the genetic Majority Muller C Element circuit for all
five values of kd are shown below:

(a) At kd = 0.0015.

(b) At kd = 0.0055.

(c) At kd = 0.0095.
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(d) At kd = 0.0135.

(e) At kd = 0.0215.

Figure B.8: Timing analysis and simulation traces of Ckt 8 - Majority Muller
C Element at kd = (a) 0.0015. (b) 0.0055. (c) 0.0095. (d) 0.0135.
(e) 0.0215.
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B.9 Ckt 9 – Speed Independent Muller C Ele-
ment

The simulation results of the genetic Speed Independent Muller C Element cir-
cuit for all five values of kd are shown below:

(a) At kd = 0.0015.

(b) At kd = 0.0055.

(c) At kd = 0.0095.
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(d) At kd = 0.0135.

(e) At kd = 0.0215.

Figure B.9: Timing analysis and simulation traces of Ckt 8 - Ckt 9 - Speed
Independent Muller C Element at kd = (a) 0.0015. (b) 0.0055.
(c) 0.0095. (d) 0.0135. (e) 0.0215.
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B.10 Ckt 10 – Real Genetic AND Gate

The simulation results of a real genetic AND gate circuit (obtained from [14])
for all five values of kd are shown below:

(a) At kd = 0.0015.

(b) At kd = 0.0055.

(c) At kd = 0.0095.
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(d) At kd = 0.0135.

(e) At kd = 0.0215.

Figure B.10: Timing analysis and simulation traces of Ckt 8 - Ckt 9 - Real
genetic AND gate [14] at kd = (a) 0.0015. (b) 0.0055. (c) 0.0095.
(d) 0.0135. (e) 0.0215.
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Logic Analysis –
Supplementary Data

The experimental data for the logic analyses of remaining 14 circuits are given
below in the following sections. As mentioned in Chapter 5, the upper thresh-
old value = 15, and the propagation delay = 1000 time units are assumed in
the experimentation for logic analyses of these circuits. Also, each circuit is
experimented for about 10,000 simulation time units.

C.1 Experimentation on the genetic circuit mod-
els from University of Utah

The experimental results of the genetic circuits obtained from [21] are given in
Figures C1 - C5. Each of these figures contain two sub figures; (a) and (b). Sub
figure (a) in all these figures is further divided into two images, which depicts (i)
the simulation screen-shot with analog and digital waveforms; (ii) the estimated
logic with percentage fitness and estimation time. Sub figure (b) shows the
analytics of simulation data used by the algorithm to construct the Boolean
expression in each case. In this figure, the input combinations, at which the
circuit’s output is expected to be high, are highlighted in green (on x-axis).
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C.1.1 NOT gate circuit

The experimental results of the genetic NOT gate circuit are shown in the
Figures C.1a and C.1b, respectively.

(a) (i) Circuit behavior when input is logic 0 and 1. (ii) Boolean expression estimated
by the logic analysis algorithm.
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(b) Analytical simulation data for constructing the Boolean expression.

Figure C.1: Logic analysis and simulation results of the genetic NOT gate
[21]. (a) Analog and digital simulation traces with Boolean logic
estimation. (b) Analytical simulation data used for constructing
the Boolean expression.
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C.1.2 NOR gate circuit

The experimental results of the genetic NOR gate circuit are shown in the
Figures C.2a and C.2b, respectively.

(a) (i) Circuit behavior for all possible input combinations. (ii) Boolean expression
estimated by the logic analysis algorithm.
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(b) Analytical simulation data for constructing the Boolean expression.

Figure C.2: Logic analysis and simulation results of the genetic NOR gate
[21]. (a) Analog and digital simulation traces with Boolean logic
estimation. (b) Analytical simulation data used for constructing
the Boolean expression.



168 Logic Analysis – Supplementary Data

C.1.3 NAND gate circuit

The experimental results of the genetic NAND gate circuit are shown in the
Figures C.3a and C.3b, respectively.

(a) (i) Circuit behavior for all possible input combinations. (ii) Boolean expression
estimated by the logic analysis algorithm.
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(b) Analytical simulation data for constructing the Boolean expression.

Figure C.3: Logic analysis and simulation results of the genetic NAND gate
[21]. (a) Analog and digital simulation traces with Boolean logic
estimation. (b) Analytical simulation data used for constructing
the Boolean expression.
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C.1.4 OR gate circuit

The experimental results of the geneticOR gate circuit are shown in the Figures
C.4a and C.4b, respectively.

(a) (i) Circuit behavior for all possible input combinations. (ii) Boolean expression
estimated by the logic analysis algorithm.
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(b) Analytical simulation data for constructing the Boolean expression.

Figure C.4: Logic analysis and simulation results of the genetic OR gate [21].
(a) Analog and digital simulation traces with Boolean logic esti-
mation. (b) Analytical simulation data used for constructing the
Boolean expression.
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C.1.5 AND gate circuit

The experimental results of the genetic AND gate circuit are shown in the
Figures C.5a and C.5b, respectively.

(a) (i) Circuit behavior for all possible input combinations. (ii) Boolean expression
estimated by the logic analysis algorithm.
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(b) Analytical simulation data for constructing the Boolean expression.

Figure C.5: Logic analysis and simulation results of the genetic AND gate
[21]. (a) Analog and digital simulation traces with Boolean logic
estimation. (b) Analytical simulation data used for constructing
the Boolean expression.
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C.2 Experimentation on the genetic circuit mod-
els from MIT and BU

The experimental results of the genetic circuit models obtained from [14] are
given in Figures C6 - C14. Each of these figures contain three sub figures; (a),
(b) and (c). Sub figure (a) in all of these nine figures is further divided into
four images, which depicts (i) the circuit schematic; (ii) the circuit’s response (or
truth table) and Boolean expression; (iii) the SBOL representation; and (iv) the
SBML model converted from the circuit’s SBOL file. The images shown as (i),
(ii) and (iii) in sub figure (a) are the screen-captured images directly obtained
from [14]. The image shown as (iv) in sub figure (a) is the screen-captured taken
in iBioSim, where the sensor block having external input inducers (shown as red-
dotted block) is added manually and rest of the model (shown as blue-dotted
block) is the result of the SBOL-SBML conversion process [61].

Sub figure (b) in all of these nine figures is also divided into two images, which
depicts (i) the screen-shot of simulation with analog and digital waveforms; and
(ii) the estimated logic with percentage fitness and estimation time. Sub figure
(c) shows the analytics of simulation data used by the algorithm to construct
the Boolean expression in each case. In sub figure (c), the input combinations,
at which the circuit’s output is expected to be high, are highlighted in green
color along the x-axis.
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C.2.1 Genetic circuit 0x70

The schematic circuit diagram of the genetic circuit, 0x70, including its re-
sponse table, the SBOL representation and the corresponding converted SBML
representation are shown in Figure C.6a(i-iv). The experimental results of this
circuit are shown in the Figures C.6b and C.6c, respectively.

(a) (i) Circuit schematic. (ii) Circuit behavior and its Boolean expression. (iii) SBOL
representation. (iv) Converted SBML model.
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(b) (i) Circuit behavior for all possible input combinations. (ii) Boolean expression
estimated by the logic analysis algorithm.
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(c) Analytical simulation data for constructing the Boolean expression.

Figure C.6: Logic analysis and simulation results of the genetic 0x70 circuit
[14]. (a) Circuit description. (b) Analog and digital simulation
traces with Boolean logic estimation. (c) Analytical simulation
data used for constructing the Boolean expression.
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C.2.2 Genetic circuit 0xC4

The schematic circuit diagram of the genetic circuit, 0xC4, including its re-
sponse table, the SBOL representation and the corresponding converted SBML
representation are shown in Figure C.7a(i-iv). The experimental results of this
circuit are shown in the Figures C.7b and C.7c, respectively.

(a) (i) Circuit schematic. (ii) Circuit behavior and its Boolean expression. (iii) SBOL
representation. (iv) Converted SBML model.
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(b) (i) Circuit behavior for all possible input combinations. (ii) Boolean expression
estimated by the logic analysis algorithm.
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(c) Analytical simulation data for constructing the Boolean expression.

Figure C.7: Logic analysis and simulation results of the genetic 0xC4 circuit
[14]. (a) Circuit description. (b) Analog and digital simulation
traces with Boolean logic estimation. (c) Analytical simulation
data used for constructing the Boolean expression.
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C.2.3 Genetic circuit 0xC8

The schematic circuit diagram of, 0xC8, including its response table, the SBOL
representation and the corresponding converted SBML representation are shown
in Figure C.8a(i-iv). The experimental results of this circuit are shown in the
Figures C.8b and C.8c.

(a) (i) Circuit schematic. (ii) Circuit behavior and its Boolean expression. (iii) SBOL
representation. (iv) Converted SBML model.
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(b) (i) Circuit behavior for all possible input combinations. (ii) Boolean expression
estimated by the logic analysis algorithm.
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(c) Analytical simulation data for constructing the Boolean expression.

Figure C.8: Logic analysis and simulation results of the genetic 0xC8 circuit
[14]. (a) Circuit description. (b) Analog and digital simulation
traces with Boolean logic estimation. (c) Analytical simulation
data used for constructing the Boolean expression.
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C.2.4 Genetic circuit 0x0E

The schematic circuit diagram of, 0x0E, including its response table, the SBOL
representation and the corresponding converted SBML representation are shown
in Figure C.9a(i-iv). The experimental results of this circuit are shown in the
Figures C.9b and C.9c.

(a) (i) Circuit schematic. (ii) Circuit behavior and its Boolean expression. (iii) SBOL
representation. (iv) Converted SBML model.
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(b) (i) Circuit behavior for all possible input combinations. (ii) Boolean expression
estimated by the logic analysis algorithm.
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(c) Analytical simulation data for constructing the Boolean expression.

Figure C.9: Logic analysis and simulation results of the genetic 0x0E circuit
[14]. (a) Circuit description. (b) Analog and digital simulation
traces with Boolean logic estimation. (c) Analytical simulation
data used for constructing the Boolean expression.
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C.2.5 Genetic circuit 0x04

The schematic circuit diagram of, 0x04, including its response table, the SBOL
representation and the corresponding converted SBML representation are shown
in Figure C.10a(i-iv). The experimental results of this circuit are shown in the
Figures C.10b and C.10c.

In this circuit, not only the inputs, B and C, are swapped but also the auto-
generated SBML model (shown in Figure C.10a(iv)) appears to be different
than the circuit diagram (shown in Figure C.10a(i)). However, this change in
the circuit’s structure still produce the same logic (shown in Figure C.10a(ii)),
but with input B and C swapped as shown in Figure C.10b(ii).

(a) (i) Circuit schematic. (ii) Circuit behavior and its Boolean expression. (iii) SBOL
representation. (iv) Converted SBML model.
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(b) (i) Circuit behavior for all possible input combinations. (ii) Boolean expression
estimated by the logic analysis algorithm.
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(c) Analytical simulation data for constructing the Boolean expression.

Figure C.10: Logic analysis and simulation results of the genetic 0x04 circuit
[14]. (a) Circuit description. (b) Analog and digital simulation
traces with Boolean logic estimation. (c) Analytical simulation
data used for constructing the Boolean expression.
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C.2.6 Genetic circuit 0x87

The schematic circuit diagram of, 0x87, including its response table, the SBOL
representation and the corresponding converted SBML representation are shown
in Figure C.11a(i-iv). The experimental results of this circuit are shown in the
Figures C.11b and C.11c.

(a) (i) Circuit schematic. (ii) Circuit behavior and its Boolean expression. (iii) SBOL
representation. (iv) Converted SBML model.



C.2 Experimentation on the Genetic Circuit Models from MIT & BU 191

(b) (i) Circuit behavior for all possible input combinations. (ii) Boolean expression
estimated by the logic analysis algorithm.
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(c) Analytical simulation data for constructing the Boolean expression.

Figure C.11: Logic analysis and simulation results of the genetic 0x87 circuit
[14]. (a) Circuit description. (b) Analog and digital simulation
traces with Boolean logic estimation. (c) Analytical simulation
data used for constructing the Boolean expression.
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C.2.7 Genetic circuit 0x4D

The schematic circuit diagram of, 0x4D, including its response table, the SBOL
representation and the corresponding converted SBML representation are shown
in Figure C.12a(i-iv). The experimental results of this circuit are shown in the
Figures C.12b and C.12c. The auto-generated SBML model (shown in Figure
C.12a(iv)) appears to be different than the circuit diagram (shown in Figure
C.12a(i)). However, this change in the circuit’s structure still produce the same
logic (shown in Figure C.12a(ii)), but with inputs B and C swapped as shown
in Figure C.12b(ii).

(a) (i) Circuit schematic. (ii) Circuit behavior and its Boolean expression. (iii) SBOL
representation. (iv) Converted SBML model.
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(b) (i) Circuit behavior for all possible input combinations. (ii) Boolean expression
estimated by the logic analysis algorithm.



C.2 Experimentation on the Genetic Circuit Models from MIT & BU 195

(c) Analytical simulation data for constructing the Boolean expression.

Figure C.12: Logic analysis and simulation results of the genetic 0x4D circuit
[14]. (a) Circuit description. (b) Analog and digital simulation
traces with Boolean logic estimation. (c) Analytical simulation
data used for constructing the Boolean expression.
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C.2.8 Genetic circuit 0x78

The schematic circuit diagram of, 0x78, including its response table, the SBOL
representation and the corresponding converted SBML representation are shown
in Figure C.13a(i-iv). The experimental results of this circuit are shown in the
Figures C.13b and C.13c.

(a) (i) Circuit schematic. (ii) Circuit behavior and its Boolean expression. (iii) SBOL
representation. (iv) Converted SBML model.
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(b) (i) Circuit behavior for all possible input combinations. (ii) Boolean expression
estimated by the logic analysis algorithm.
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(c) Analytical simulation data for constructing the Boolean expression.

Figure C.13: Logic analysis and simulation results of the genetic 0x78 circuit
[14]. (a) Circuit description. (b) Analog and digital simulation
traces with Boolean logic estimation. (c) Analytical simulation
data used for constructing the Boolean expression.
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C.2.9 Genetic circuit 0x1C

The schematic circuit diagram of, 0x1C, including its response table, the SBOL
representation and the corresponding converted SBML representation are shown
in Figure C.14a(i-iv). The experimental results of this circuit are shown in the
Figures C.14b and C.14c. The auto-generated SBML model (shown in Figure
C.14a(iv)) appears to be different than the circuit diagram (shown in Figure
C.14a(i)). However, this change in the circuit’s structure still produce the same
logic (shown in Figure C.14a(ii)), but with inputs B and C swapped as shown
in Figure C.14b(ii).

(a) (i) Circuit schematic. (ii) Circuit behavior and its Boolean expression. (iii) SBOL
representation. (iv) Converted SBML model.
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(b) (i) Circuit behavior for all possible input combinations. (ii) Boolean expression
estimated by the logic analysis algorithm.
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(c) Analytical simulation data for constructing the Boolean expression.

Figure C.14: Logic analysis and simulation results of the genetic 0x1C circuit
[14]. (a) Circuit description. (b) Analog and digital simulation
traces with Boolean logic estimation. (c) Analytical simulation
data used for constructing the Boolean expression.
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C.2.10 Discussion

The logic analyses of these circuit indicates that the proposed algorithm ob-
tained the correct Boolean logic with inputs B and C swapped with each other.
This interchange of signals B and C is also reflected in the auto-generated SBML
models of all circuits as shown in the image (iv) in each of the Figures C.6a-
C.14a.

The auto-generated SBML models of the circuits, 0x04, 0x4D, and 0x1C, in-
dicate that their internal structures are different than those shown in [14].
However, the structural changes in these circuits do not entirely change the
functionality of these circuits except that, similar to other circuits, the inputs
B and C are interchanged. Thus, these logic analyses experimentation, using
D-VASim, is found very useful in identifying or verifying the correct Boolean
logic of a circuit.
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The experimental results of the remaining four circuits, 0x70, 0xC4, 0xC8 and
0x0E are given below in Figures D.1, D.2, D.3 and D.4, respectively.

In case of circuit x70 (as mentioned before in Chapter 6), no circuit is generated
for the Boolean logic obtained from D-VASim (with inputs B and C swapped),
because there is no NOR gate available in the genetic gates library (shown in
Figure 6.7) with PTac and PBad promoters, as inputs.

Also, in the case of 0xC8 (for the logic expression obtained from Cello paper
[14]), the components in circuit 1 and 2 are same, however the input source of
generating SrpR and AmtR proteins are interchanged in both circuits.

Similarly for 0xC8, the circuit components in circuit 4 (in case of Cello original
expression [14]) seems similar to the circuit components in circuit 1 (for the
logic expression obtained from D-VASim) as shown in Figure D.3. However,
the difference is in the input promoters generating the proteins - the activity of
promoters PHlY llR and PTet controls the production of protein, BM3R1 in the
former case, and the protein BM3R1 is controlled by the activities of promoters
PHlY llR and PBad in the later case. Similar observations can also be made for
other circuits.
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D-VASim –
Quick Start Guide

The quick start guide (QSG) of D-VASim latest version is attached as a complete
PDF file below.
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About D-VASim
D-VASim stands for Dynamic Virtual Analyzer and Simulator. It is 
developed to analyze and simulate the genetic logic circuit models 
developed in the Systems Biology Markup Language (SBML) [1]. 
Practically, D-VASim can be used to simulate any bio-model available 
in SBML L3v1 (Level 3 version 1) core; however, it is solely designed 
for the simulations of genetic logic circuits, where user can apply 
external signals on the model during runtime. 

D-VASim is developed on graphical programming language platform 
called LabVIEW (Laboratory Virtual Instrument Engineering 
Workbench) [2]. Besides graphical programming, textual programming 
language, like JAVA, is also used to integrate JSBML [3] library in it. 

In this short document, you will learn how to use D-VASim (v1.2) to 
perform virtual laboratory experiments. This requires you to have pre-
synthesized bio-model, in the form of SBML file, you want to test. 
This SBML can be obtained by creating a bio-model using any other 
bio-tool and generating its SBML L3v1 format.  

Stochastic simulation algorithm (SSA) has been implemented to 
perform stochastic simulations of SBML models. Furthermore, D-
VASim is also capable of simulating the deterministic behavior of a 
bio model by solving ordinary differential equations. 

Latest version of D-VASim can be downloaded from 
http://bda.compute.dtu.dk/downloads/. The sample SBML models, 
included in the download package, are developed at the University of 
Utah by Myer’s group [4].  The video demo of D-VASim can also be 
seen at http://bda.compute.dtu.dk/user-manuals/, which demonstrates 
the analysis of upper threshold value only. In D-VASim v1.2, the 
ability to analyze the upper and lower threshold values is included. 

Conventions
The following conventions appear in this document:

This icon denotes a tip, which notifies you to advisory information.

This icon denotes an alert, which notifies you to important information.

bold Bold text denotes items that you must select or click or enter the value 
in the software, such as open file option or running the simulation 
button or entering the value of simulation speed etc.

italic Italic text denotes the name of a folder or a file path. 

bold and italic Bold and italic text denotes the name of a file. 
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1. Analyzing the SBML model using D-VASim
In this section, you will learn how to import and analyze the SBML 
model of a genetic circuit in D-VASim. In this document, we will use 
the SBML model of a genetic AND gate enclosed in the 
Sample_SBML_Models folder in the download package.   

1.1. Launching D-VASim
The front interface of D-VASim, shown in Figure 1, will appear when 
you double-click on D-VASim.app (for MAC OS) or D-VASim.exe 
(for Windows OS). 

Figure 1. Front interface of D-VASim. 

Complete the following steps to import the SBML model of a genetic 
AND gate circuit. 

1. Click open file button on the option “Select SBML Model 
(.xml)”. 

2. Navigate to the file and_RB.xml placed under the 
application directory../D-VASim/Sample_SBML_Models/. 

This will run the JSBML library and display the SBML components as 
shown in Figure 2. 
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Figure 2. D-VASim showing the SBML components of a genetic AND gate model.

All the SBML components of a model can be analyzed here in a clean 
tabular form. For example, The Specie tab shown in Figure 2 depicts 
the total number of specie used in the genetic AND gate model along 
with their corresponding details. Similarly, the Reactions tab shown in 
Figure 3 contains the information related to the reaction kinetics of a 
model. D-VASim also generates the ordinary differential equations of 
a model, which can be seen in Figure 3. These equations are used to 
simulate the deterministic behavior of SBML model. 

Figure 3. Reactions tab showing the reaction kinetics of a genetic AND gate model.
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1.2. Generating a Virtual Laboratory Instrument
Once the components of SBML model are analyzed, a virtual 
environment for the interactive simulation can be generated simply by 
clicking on any of the two options, Generate SSA VI or Generate 
ODE VI shown at the top right corner of a tool. Now click Generate 
SSA VI button to generate a virtual instrument (VI) for stochastic 
simulations of a genetic AND gate model. This will bring up a virtual 
instrument shown in Figure 4. 

Figure 4. Virtual Instrument specifically for a genetic AND gate model.
  

Any instrument for stochastic simulation generated by D-VASim for 
the first time does neither reveal the names of graph legend nor the 
modifier controls, but only the parameters information. Pressing the 
RUN button (  shown at the top left corner) starts the simulation and 
makes the graph legends and modifiers visible. 
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2. Virtual Experimentation for Stochastic Simulations
The virtual instrument (shown in Figure 4) looks similar to a physical 
instrument, which can be used to interact with the model by tuning the 
input concentrations with the control knobs and observing the effects 
graphically.

Once the simulation is started after pressing the  button, user can 
increase or decrease the concentration of input (or external modifier) 
specie and observe its effects on the model during run time. This 
runtime interaction with the model gives user an insight of being in the 
lab performing wet-lab experiments.

Figure 5 shows the screenshot of the stochastic simulation of a genetic 
AND gate taken randomly after ~3050 time units has lapsed. This 
figure shows that unlike SBML events, which are predefined in the 
SBML file, user can interact with the model and change the 
concentration of input specie to any level and at any instant of time. In 
case if the concentration of input specie are required to be triggered to 
any specific level instantly, the numeric displays located beneath the 
control knobs can be used. As same as the user interact with the model 
by varying the input concentration using control knobs, the parameters 
can also be varied and their effects can be observed graphically during 
runtime.

When a STOP button (  located besides the run button at the top left 
corner) is pressed, screenshot of a graphical window is captured and 
saved inside Sim_Results folder located in the default application 
directory.

Figure 5. Screen capture of the stochastic simulation of a genetic AND gate.
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Each image is saved by the following naming convention; “<model-
name>_SSA_Screenshot.bmp”, where <model-name> is the name of a 
model. For example, the screenshot of a graphical window of a genetic 
AND gate model is saved as and_RB_SSA_Screenshot.bmp. The 
simulation traces of the entire session are also saved in the Sim_Results 
folder with the convention “<model-name>_SSADatalog.xls”. Pressing 
the RUN button again starts the simulation from the beginning.  

Alert – When the STOP button is pressed, the captured screenshot and the data 
log file overwrites any previously saved files of the same model. 

Tip – The properties of graphical plots, including colors, can be changed by a 
left mouse click on the color of graph legend and selecting the desired menu. 

2.1. Runtime Simulation Options
There are two runtime simulation options, available in D-VASim v1.2, 
shown at the bottom right corner of a VI in Figure 5. These two options 
are described below:

1. Simulation Speed: This option allows you to speed up or 
slow down the simulation by entering the numerical value in 
milliseconds.

2. Logic Verification: Obtain the Boolean logic exist in the 
model. Clicking this button prompts the user to input the 
threshold values of input and output specie, as shown in 
Figure 8. When automatic threshold value analysis is 
performed, this box is auto-populated with the estimated 
threshold value. This option is disabled when the simulation 
is not running. 

Alert – Make sure to apply all the possible input combinations each after the 
correct propagation delays. The results of boolean logic analysis will otherwise 
be incorrect.

Alert – Though, D-VASim v1.2 supports the logic verification of n-input 
genetic logic circuits, but the logic verification algorithm is tested for up to 3-
input genetic circuits only. It is because the models for more complex circuits 
are not available.

2.2. Simulation Settings
The simulation settings are shown in the right sidebar, which contains 
the following five simulation options.

1. Continuous Simulation: User may specify here if they want to 
perform continuous simulation or for a specific interval of time. 
If switched to “No”, the box below can be used to specify the 
simulation time for which user wants to run the simulation. The 
default value of this switch is “Yes” meaning that the continuous 
simulation is always performed unless specified. 
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2. Modifier Degradation: When checked, perform more realistic 
simulation by allowing the input concentrations to degrade over 
time. 

3. Simulate SBML Event: When checked, simulate the events 
described in SBML file. 

Tip – The triggering time and the assignment value of SBML events can be 
changed during run time until the time of event occurs. For example, if the 
triggering time of event is 1000 time units, the trigger time and the assignment 
value can be changed before 1000 time units has lapsed.   

4. Threshold Value Analysis: 
Manual – In this mode, VI assume that the threshold value of 
input specie and the propagation delays are already known.
Auto – When this mode is selected, VI estimates the threshold 
value based on the setting tab shown in Figure 6 below. 
 Start at – Specify the initial concentration of input specie 

from which the analysis is required to be started. It is 
recommended to keep this value 0 for correct results. 

 Increment of – This control allow you to set up the 
concentration value, which the tool increments during each 
iteration for checking threshold concentration. 

For example: If you set 
Start at: 0
Increment of: 5
Stop at: 15 
Tool will check the threshold concentration for 4 different 
levels of concentration. i.e. 0 --> 5 --> 10 --> 15, for all 
possible input combinations.

Figure 6. Settings dialogue for automatic threshold value and propagation delay analyses. 

 Stop at – Specify the concentration of inputs at which the 
threshold analysis should be stopped.

 Assumed Time Delay – Specify initially assumed time 
delay.  
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 No. of iterations – For how many times a user wants to 
verify if the estimated threshold value is consistent.

 Verification RT – For how long a user wants to verify the 
estimated threshold value for each no. of iterations 
mentioned above.

 Settling Time – It is also an assumed value, which specifies 
the time required by a model to get stable. During 
verification process, D-VASim triggers the concentration of 
inputs to the estimated threshold level once this time value 
has elapsed. Thus the verification starts once the input is 
triggered to its estimated threshold value and therefore it 
should run for enough amount of time to measure the 
propagation delay as well as the correctness of an estimated 
threshold value. Depending on the complexity of input-
output stage, the value of “Verification RT” is suggested to 
be at least 3-4 times higher than the value of Settling Time.

 Name of Output – D-VASim now allows user to perform 
the threshold value and propagation delay analysis either for 
an entire circuit or for the intermediate circuit components. 
In this field, user can specify the name of output specie. The 
timing analysis is performed between the input specie, 
selected as control knobs (see section 2.2) and the output 
specie specified in this field. 

 % Acceptance of consistency – Specify the minimum 
percentage of threshold value consistency a user wants. 
Th High: If the chosen value is 90 for the AND gate genetic 
circuit, the tool give the results only when the average 
output is found to be 90% greater than the estimated 
threshold value.
Th Low: If the chosen value is 40 for the AND gate genetic 
circuit, the tool estimates the threshold value to be lower 
level when the size of an average output data above the 
estimated threshold value is found to be less than 40%.

Alert – It is an indication of wrong parameter selection if either tool takes too 
long to estimate the results or produce incorrect results. In this case user should 
consider increasing the value of “Verification RT” further higher (beyond 3-4 
times) than the value of “Settling Time”. Though assuming large values of these 
parameters, including “Assumed Time Delay”, may increase the estimation time, 
but gives the better estimation.

When the tool finish estimating the threshold value with the desired 
minimum percentage of consistency, the results are displayed in the 
dialogue box as shown in Figure 7. The value of estimated propagation 
delay is the average value over all “No. of iterations” specified in the 
settings dialogue (Figure 6). The value enclosed in braces after the 
average estimated propagation delay specifies the standard deviation. In 
this figure, the output consistency for upper threshold level is found to 
be 100 % and that of lower threshold level is 23.1%.
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Figure 7. Dialogue box indicating the estimated results of threshold value and propagation delay analysis.

The results are stored in the current application directory with the 
following naming convention; “<model-name>_SSA-TP-Analysis.txt”, 
where <model-name> is the name of a model. For the case of genetic 
AND gate, the results will be saved as and_RB_SSA-TP-Analysis.txt.

User can now perform the runtime interactive simulations and perform 
logic analysis, by pressing the Logic Verification button shown in 
section 2.1.  It will pop up a window (Figure 8) where user can specify 
the upper threshold values of a circuit. As mentioned before, if the 
automatic threshold value analysis is performed, the list of threshold 
values is auto populated as shown in Figure 8. When all the threshold 
values are entered, a new window (Figure 9) pops up indicating the 
logic function, in terms of a Boolean expression, extracted from the 
genetic logic circuit model. This window also contains the entire 
simulation data as analog data points and their corresponding digital 
data according to the defined threshold values. If all the input 
combinations are applied correctly during the simulation, a message in 
green text (Figure 9 (a)) will appear showing the percentage fitness of 
the boolean expression in the acquired simulation data. If all the 
possible input combinations are not applied, a boolean expression may 
appear with the message in red text (Figure 9 (b)) indicating that all 
input combinations are not applied correctly. Boolean expression box 
may also appear blank when all the input combinations are not applied 
correctly. A correct set of input combinations is the one in which all the 
possible input combinations are applied each after the minimum 
propagation delay. 

D-VASim also indicates the time, in seconds, required to estimate the 
boolean logic from the analog simulation data. This estimation time 
depends on the size of the data as well as on the number of inputs of a 
circuit.
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Figure 8. Dialogue box to set up the threshold values for Boolean logic analysis.

(a)

(b)
Figure 9. Boolean logic extracted from the analog simulation data along with its corresponding digital data. 

(a) Percentage fitness appears when all the input combinations are properly applied. 
(b) Error message appears when all the input combinations are not applied correctly before trying to 

estimate the boolean logic of a circuit. 
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2.3. Additional features of Stochastic Simulation in D-VASim
In D-VASim v1.1, two new features have been introduced, which 
allows user to: 

1) Create control knobs of specie manually. This not only helps 
user to vary the concentration of selected specie during 
runtime, but also perform the timing analysis between these 
specie and the specified output. 

2) View the mixed signal waveforms (digital and analog) for 
better timing analysis. 

The control knobs for the input specie can be created by dropping 
down the Options menu and selecting External Inputs as shown in 
Figure 10(a). When External Inputs is selected, a pop-up window is 
appeared as shown in Figure 10(b). The user can drag the specie name 
from left-hand box to right-hand box in order to create its control knob. 
In Figure 10(b), LacI and TetR specie are selected whose control knobs 
are created as shown in Figure 4. These control knobs can only be 
created when the simulation is not running. 

Figure 10. Process of creating control knobs for specie. (a) Select External Inputs from Options 
dropdown menu. (b) Drag the name of specie from left-hand to right-hand box to create its control knob.
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Figure 11. Mixed signal waveforms of genetic AND gate.

Similarly, after performing interactive stochastic simulation of a model 
in the D-VASim virtual laboratory environment, the mixed signal 
waveforms for timing analysis can be viewed by selecting Mixed 
Signal Waveforms option from the Options dropdown menu. Figure 
11 shows the window of mixed signal waveforms generated for the 
simulation traces of genetic AND gate shown in Figure 5. This figure 
shows the analog and digital traces, in parallel, for genetic AND gate. 
The digital curves are generated based on the estimated threshold value 
shown in Figure 7. This value is automatically extracted if the auto 
threshold value analysis is performed, otherwise user can enter the 
threshold value and Reset the curves. Capture Graph button takes the 
screen-shot of waveforms and save it inside Sim_Results folder under 
the default application directory. Each image is saved by the file name 
MixedSignalWaveforms.bmp.  The blank vertical box shown at the 
right-hand side in Figure 11 allows user to create cursors (see section 4 
for more details about how to create cursors). 

Alert – When the Capture Graph button is pressed, the captured 
screenshot overwrites any previously saved files of the same model. 

Tip – The properties of graphical plots, including colors, can be 
changed by a left mouse click on the color of graph legend and 
selecting the desired menu. 
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3. Virtual Experimentation for ODE Simulations
Similar to generating virtual instrument for stochastic simulations, the 
virtual instrument for deterministic simulations can also be generated 
by clicking on Generate ODE VI button depicting in Figure 2. 

When the  button is pressed, the deterministic simulation results of a 
genetic AND gate for 6000 time units are appeared as shown in Figure 
12. As same as in the case of stochastic simulation, user can change the 
concentration of external input specie using control knobs for 
deterministic simulation also. However, every single change in the 
input concentration or parameters results in the execution of selected 
simulation algorithm for the defined interval of time and plots the new 
set of curves. 

Figure 12. Screen capture of the deterministic simulation of a genetic AND gate.

The horizontal status bar is shown at the bottom in Figure 12. It shows the 
status of the actions being performed in this VI for ODE simulations. For 
example, pressing the run button shows the status of simulation as shown in 
Figure 13 below. The progress bar shown at right-hand side depicts the 
percentage of results currently being obtained. The plot is visible once the 
progress bar reaches to 100 %. 

Figure 13. Screen capture of the status bar showing that the VI is running simulation. The progress bar 
shown at right-hand side indicates that the 65% of simulation data is obtained. 
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When a RESET button ( ) button is pressed, screenshot of a graph 
window and the simulation data is captured and saved under Sim_Results 
folder located in the default application directory. Each image is saved by 
the following naming convention; “<model-
name>_ODE_Screenshot.bmp”, where <model-name> is the name of a 
model. For example, the screenshot of a graphical window of a genetic 
AND gate model is saved as and_RB_ODE_Screenshot.bmp. The 
simulation traces of the entire session are saved with the naming 
convention; “<model-name>_ODEDatalog.xls”. Pressing the RUN button 
again starts the simulation from the beginning.  

Alternatively, the simulation data and the graphical plots can be stored by 
pressing the buttons shown in Figure 14(a) and 14(b) respectively.

Figure 14. Available options in ODE VI to (a) Save simulation data. (b) Capture graph window.

Alert – When the RESET or Save Sim Data or Capture Graph button is 
pressed, the captured screenshot and the data log file overwrites any previously 
saved files of the same model. 

Tip – The properties of graphical plots, including colors, can be changed by a 
left mouse click on the color of graph legend and selecting the desired menu. 

3.1. Simulation Settings
The Simulation Settings button (shown in Figure 15(a)) helps user to set 
the desired simulation parameters. A settings window, shown in Figure 
15(b), is popped-up when user clicks on the Simulation Settings button.

Figure 15. ODE simulation properties (a) Simulation settings option. (b) Window of simulation settings. 
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D-VASim VIs for ODE simulation supports the following ten continuous 
solvers:

1. Runge-Kutta 1 (Euler)
2. Runge-Kutta 2
3. Runge-Kutta 3
4. Runge-Kutta 4
5. Runge-Kutta 23 (variable)
6. Runge-Kutta 45 (variable)
7. BDF (variable)
8. Adams-Moulton (variable)
9. Rosenbrock (variable)
10. Discreet States Only

The parameters shown in Figure 15(b) are set as the default parameters. 
There is one other option available at the right bottom of ODE VI, which is 
described below

Del events after execution: When marked checked, the events are deleted 
internally after executing once. This helps increasing the simulation speed 
by avoid checking the executed events repeatedly.

Tip – If the desired simulation results are not obtained, try simulating the model 
again by checking or unchecking the option “Del events after execution”.    



A quick start guide to D-VASim 18

4. General Software Options and Tips
Following are some general tips and options for both stochastic and 
ODE virtual instruments generated by D-VASim.

Tip – Hover mouse over simulation options to pop up the tip strip with a short 
description. 

Tip – Pressing keys CMD+SHIFT+H (on MAC OS) and CTRL+H (on Windows 
OS) open the context help.

Tip – User can right click on the graph window to get the runtime shortcut menu 
shown in Figure 16 below.

Figure 16. Runtime shortcut menu of graph window. 

Graph Palette: This option can be used to zoom-in, zoom-out, expand 
graph etc. 

Cursor Legend: With the help of this box, cursors can be set to track 
the values of desired specie. For example, single-plot cursor can be set 
to monitor GFP specie by right clicking in the Cursors window and 
then selecting Single-Plot from Create Cursors option, as depicted in 
Figure 17(a). Once the cursor is created, it can be snap to GFP specie 
by right clicking on the created cursor and then go to Snap To option 
and select GFP. These steps are shown in Figure 17(b). 
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Figure 17. Steps of creating cursors on specie. 

Finally, similar to any physical instrument, virtual instruments 
powered by D-VASim also have emergency shut down button ( ) 
shown at the top right corner of a virtual instrument. This button can be 
used to stop and shut down the instrument instantly. 
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